On $h\alpha$ - T_0 and $h\alpha$ - T_1 Spaces in Generalized Topological Space

Dr. S. B. Tadam¹ and Ms. K. R. Sharma²

Department of Mathematics

Shri R.L.T. College of Science, Akola

Abstract: In this paper we introduce continuity, closed mapping, homeomorphism in $h\alpha$ -generalized topological space. We also define $D_{\mu h\alpha}$ -set in μ - $h\alpha$ -generalized topological space and study the relation between $D_{\mu h\alpha}$ -set and μ - $h\alpha$ -open set. Also we introduce μ - $h\alpha$ - T_0 space, μ - $h\alpha$ - D_0 space, μ - $h\alpha$ - T_1 space and μ - $h\alpha$ - D_1 space. Their interrelationship, properties and characterizations are obtained.

Keywords: Generalized Topological space, μ - α -Generalized Topological space, μ - $h\alpha$ -Generalized Topological space, $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous, $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism, μ - $h\alpha$ - T_0 space, μ - $h\alpha$ - D_0 space, μ - $h\alpha$ - T_1 space and μ - $h\alpha$ - D_1 space.

1. Introduction:

N. Levein was the first to broaden topology by replacing open sets with semi-open sets in his article "Semi-open sets and semi-continuity in topological spaces". The notions of α -open set, *h*-open set, and $h\alpha$ -open set were initially introduced by O.Najastad [19], A. Fadhil [10], B.S. Abdullah, Sabh W. Askandar, and Ruquyah N. Balo [1], respectively.

In 2002, A. Csaszar first proposed the concept of generalized topological space. A generalized topology is a collection of subsets of a set that are closed in any arbitrary union. Let X be a non empty set and $\mathcal{P}(X)$ be the power set of X.A subfamily μ of $\mathcal{P}(X)$ is called a generalized topology (GT, for short) on X if μ is closed under arbitrary union. (X, μ) is called a generalized topological space (GTS)[7]. μ -open sets are the members of μ , and μ -closed sets are the complement of these. In GTS (X, μ) , here $M_{\mu} = \bigcup \{U : U \in \mu\}$. A GTS (X, μ) is called strong if $M_{\mu} = X[4]$.

Dr.S.B.Tadam and Ms.K.R.Sharma introduced the idea of μ - $h\alpha$ -generalized topological space[20]. A subset A of a generalized topological space X is said μ - $h\alpha$ -open set denoted by $(\mu$ - $h\alpha$ -os) if for each set that is not empty U in X, $U \neq X$ and U is μ - α -open such that $A \subseteq i_{\mu}(A \cup U)$. The collection of all μ - $h\alpha$ -open sets is denoted by $\mu_{h\alpha}$. i.e. $\mu_{h\alpha} = \{A : A \text{ is } \mu$ - $h\alpha$ -open set in $X\}$. Here, $M_{\mu_{h\alpha}} = \bigcup \{U : U \in \mu_{h\alpha}\}$.

This work presents the concepts of continuity, closed mapping, and homeomorphism in the $h\alpha$ -generalized topological space. In addition, we define $D_{\mu_{h\alpha}}$ -set and μ - $h\alpha$ -generalized topological space and studies the relationship between $D_{\mu_{h\alpha}}$ -set in μ - $h\alpha$ -open set. Also we introduce μ - $h\alpha$ - T_0 space, μ - $h\alpha$ - D_0 space, μ - $h\alpha$ - T_1 space and μ - $h\alpha$ - D_1 space. Their interrelationship, properties and characterizations are obtained.

2. Preliminaries:

In this section some definitions, basic concepts in generalized topological space have been given.

Definition 2.1: μ - T_0 :[4] A generalized topological space (X, μ) is said to be μ - T_0 if for any pair of distinct points $x, y \in M_\mu$, $\exists \mu$ -open set containing precisely one of x and y.

Definition 2.2: μ - T_1 :[4] A generalized topological space (X, μ) is said to be μ - T_1 if $x, y \in M_\mu$, $x \neq y$ implies the existence of μ -open sets U_1 and U_2 such that $x \in U_1$ and $y \in U_2$ and $x \notin U_2$ and $y \notin U_1$.

Definition 2.3: D_{μ} -set:[4, 16] A subset *A* of *X* is called a D_{μ} -set if there are two μ -open sets *U* and *V* such that $U \neq X$ and A = U - V.

Remark 2.4:[4] Every μ -open set $A \neq X$ is D_{μ} -open set.

Remark 2.5: A D_{μ} -set is always contained in M_{μ} .

Definition 2.6: μ - D_0 :[4] A generalized topological space(X, μ) is called μ - D_0 if for any pair of distinct points x and y of $M_\mu \exists a D_\mu$ -set of X containing x but not y or a D_μ -set of X containing y but not x.

Definition 2.7: μ - D_1 :[4] A generalized topological space(X, μ) is called μ - D_1 if for any pair of distinct points x and y of $M_{\mu} \exists$ two D_{μ} -sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Definition 2.8: Subspace of GTS:[5] Let (X, μ) be a generalized topological space and X^* be any nonempty subset of *X*. Then the relative generalized topology for X^* is the collection μ^* defined as $\mu^* = \{A^* : A^* = A \cap X^*, A \in \mu\}$. Hence $M_{\mu}^* = \bigcup \{A^* : A^* \in \mu^*\}$. Here (X^*, μ^*) is called the subspace of a generalized topological space (X, μ) and the members of μ^* are said to be the μ^* -open sets of (X^*, μ^*) . The set which is the complement of μ^* -open is called μ^* -closed set of (X^*, μ^*) . We denote the collection of all μ^* -closed set of X^* by \mathcal{F}^* i.e. $\mathcal{F}^* = \{F^* : F^*$ is μ^* -closed in $X^*\}$.

We introduce the μ - α -subspace of a μ - α -generalized topological space and μ - $h\alpha$ - subspace of a μ - $h\alpha$ -generalized topological space and obtained their properties in [21] as follows.

Definition 2.9: μ - α -Subspace of a μ - α -generalized topological space X:[21] Let (X, μ) be a generalized topological space and X^* be any non empty subset of X. Then μ - α -relative generalized topology for X^* is the collection μ_{α}^* defined as $\mu_{\alpha}^* = \{A^* : A^* = A \cap X^*, A \in \mu_{\alpha}\}$. Hence $M_{\mu_{\alpha}}^* = \bigcup \{A^* : A^* \in \mu_{\alpha}^*\}$. Here (X^*, μ_{α}^*) is called the μ - α -subspace of a μ - α -generalized topological space (X, μ_{α}) and the members of μ_{α}^* are said to be the μ_{α}^* -open sets of (X^*, μ_{α}^*) . The set which is the complement of μ_{α}^* -open is called μ_{α}^* -closed set of (X^*, μ_{α}^*) . We denote the collection of all μ_{α}^* -closed set of X^* by \mathcal{F}_{α}^* i.e. $\mathcal{F}_{\alpha}^* = \{F^* : F^*$ is μ_{α}^* -closed in $X^*\}$.

The μ - α -subspace (X^*, μ_{α}^*) of a μ - α -generalized topological space (X, μ_{α}) is also a generalized topological space. Also, $M_{\mu_{\alpha}}^* \subseteq M_{\mu_{\alpha}}$.

Definition 2.10: μ - $h\alpha$ -Subspace of a μ - $h\alpha$ -generalized topological space X:[21] Let (X, μ) be a generalized topological space and X^* be any non empty subset of X. Then μ - $h\alpha$ -relative generalized topology for X^* is the collection $\mu_{h\alpha}^*$ defined as $\mu_{h\alpha}^* = \{A^* : A^* = A \cap X^*, A \in \mu_{h\alpha}\}$. Hence $M_{\mu_{h\alpha}}^* = \bigcup \{A^* : A^* \in \mu_{h\alpha}^*\}$. Here $(X^*, \mu_{h\alpha}^*)$ is called the μ - $h\alpha$ -subspace of a μ - $h\alpha$ -generalized topological space $(X, \mu_{h\alpha})$ and the members of $\mu_{h\alpha}^*$ are said to be the $\mu_{h\alpha}^*$ -open sets of $(X^*, \mu_{h\alpha}^*)$. The set which is the complement of $\mu_{h\alpha}^*$ -open is called $\mu_{h\alpha}^*$ -closed set of $(X^*, \mu_{h\alpha}^*)$. We denote the collection of all $\mu_{h\alpha}^*$ -closed set of X^* by $\mathcal{F}_{h\alpha}^*$ i.e. $\mathcal{F}_{h\alpha}^* = \{F^* : F^*$ is $\mu_{h\alpha}^*$ -closed in $X^*\}$.

The μ - $h\alpha$ -subspace $(X^*, \mu_{h\alpha}^*)$ of a μ - $h\alpha$ -generalized topological space $(X, \mu_{h\alpha})$ is also a generalized topological space. Also, $M_{\mu_{h\alpha}}^* \subseteq M_{\mu_{h\alpha}}$.

3. Continuity and Homeomorphism in $h\alpha$ -generalized topological space:

Definition 3.1: Let(X, μ) and (Y, ν) be the generalized topological spaces, and let ($X, \mu_{h\alpha}$) and ($Y, \nu_{h\alpha}$) be its derived μ - $h\alpha$ -GTS and ν - $h\alpha$ -GTS respectively. A function $f: (X, \mu_{h\alpha}) \rightarrow (Y, \nu_{h\alpha})$ is said to be ($\mu_{h\alpha}, \nu_{h\alpha}$)-continuous at a point $x \in X$ if and only if for every ν - $h\alpha$ -open set G^* containing f(x) there is μ - $h\alpha$ -open set G containing x such that $f(G) \subseteq G^*$.

Further we say that *f* is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous on a set $E \subseteq X$ if and only if it is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous at each point of *E*.

Theorem 3.2: A function $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous if and only if the inverse image of every ν -h α -open set in Y is μ -h α -open set in X.

Proof: Suppose that f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous on X and G^* is ν - $h\alpha$ -open set in Y. Then we have to show that $f^{-1}(G^*)$ is μ - $h\alpha$ -open set in X.

i.e. We have to show that $f^{-1}(G^*)$ is a neighborhood of each of its points.

Let $x \in f^{-1}(G^*)$. Then $f(x) \in G^*$. As f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous on X. \therefore for ν - $h\alpha$ -open set G^* in Y containing f(x) there is μ - $h\alpha$ -open set G in X containing x such that $f(G) \subseteq G^*$.

Now, $f(G) \subseteq G^* \Rightarrow G \subseteq f^{-1}(G^*)$

Also, $f(x)\in G^*\Rightarrow x\in f^{-1}(G^*)$

i.e. for the point $x \in f^{-1}(G^*) \exists \mu - h\alpha$ -open set G such that $x \in G \subseteq f^{-1}(G^*)$.

Thus $f^{-1}(G^*)$ is a neighborhood of a point *x*.

Thus $f^{-1}(G^*)$ is a neighborhood of each of its point.

Hence $f^{-1}(G^*)$ is μ -h α -open set in *X*.

Conversely:

Suppose inverse image of every ν - $h\alpha$ -open set in Y is μ - $h\alpha$ -open set in X. We have to show that the mapping $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous on X. Let $x \in X$ and G^* be any ν - $h\alpha$ -open set containing f(x). Then by hypothesis, $f^{-1}(G^*)$ is μ - $h\alpha$ -open set in X. Hence $f^{-1}(G^*)$ is a neighborhood of each of its point.

Also $f(x) \in G^* \Rightarrow x \in f^{-1}(G^*)$.

: for $x \in f^{-1}(G^*)$ there is μ -h α -open set G in X such that $x \in G \subseteq f^{-1}(G^*)$.

As $G \subseteq f^{-1}(G^*) \Rightarrow f(G) \subseteq f(f^{-1}(G^*)) \subseteq G^*$ i.e. $f(G) \subseteq G^*$.

Also $x \in G \Rightarrow f(x) \in f(G) \subseteq G^*$.

: for $x \in X$ and for $\nu - h\alpha$ -open set G^* containing f(x) there exists $\mu - h\alpha$ -open set G in X containing x such that $f(G) \subseteq G^*$. Hence, f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

Theorem 3.3: A function $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous if and only if the inverse image of every ν -h α -closed set in Y is μ -h α -closed set in X.

Proof: Suppose f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous. Then we have to show that the inverse image of every ν -h α -closed set in Y is μ -h α -closed set in X.

Let *B* be ν - $h\alpha$ -closed set in *Y*. Then we have to show that $f^{-1}(B)$ is μ - $h\alpha$ -closed set in *X*. i.e. we have to show that $X - f^{-1}(B)$ is μ - $h\alpha$ -open set in *X*. As *B* be ν - $h\alpha$ -closed set in $Y \Rightarrow Y - B$ is ν - $h\alpha$ -open set in *Y*. Since *f* is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous then by theorem 3.2, $f^{-1}(Y - B)$ is μ - $h\alpha$ -open set in *X*.

Now
$$f^{-1}(Y - B) = \{x \in X : f(x) = y, y \in Y - B\} = \{x \in X : f(x) = y, y \in Y - B \subseteq M_{v_{ha}}\}$$

Also, $f^{-1}(B) = \{x \in X : f(x) = y, y \in B\}$

 $\therefore X - f^{-1}(B) = \{x \in X : x \notin f^{-1}(B)\} = \{x \in X : \nexists y \in B \text{ such that } f(x) = y\} = \{x \in X : f(x) = y, y \in Y - B \subseteq M_{\nu_{h\alpha}}\}$

Hence, $f^{-1}(Y - B) = X - f^{-1}(B)$.

As $f^{-1}(Y - B)$ is μ -h α -open in X and hence, $X - f^{-1}(B)$ is μ -h α -open in $X \Rightarrow f^{-1}(B)$ is μ -h α -closed in X.

Conversely: Suppose inverse image of every ν - $h\alpha$ -closed set in Y is μ - $h\alpha$ -closed set in X. We have to show that f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

i.e. we have to show that inverse image of every ν - $h\alpha$ -open set in Y is μ - $h\alpha$ -open set in X. Let A be ν - $h\alpha$ -open set in Y \Rightarrow Y – A is ν - $h\alpha$ -closed in Y.

 $\therefore f^{-1}(Y - A) \text{ is } \mu - h\alpha \text{-closed set in } X. \text{ But } f^{-1}(Y - A) = X - f^{-1}(A).$

 $\therefore X - f^{-1}(A) \text{ is } \mu - h\alpha \text{-closed set in } X \Rightarrow f^{-1}(A) \text{ is } \mu - h\alpha \text{-open set in } X.$

: inverse image, $f^{-1}(A)$ is μ -h α -open in X for ν -h α -open set A in Y.

Hence f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

Theorem 3.4: Let $f:(X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ be a mapping from μ - $h\alpha$ -GTS $(X, \mu_{h\alpha})$ to a ν - $h\alpha$ -GTS $(Y, \nu_{h\alpha})$. Then the following statements are equivalent.

- (1) f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.
- (2) $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A))$ for every $A \subseteq X$.
- (3) $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$ for every $B \subseteq Y$.

Proof:(1) \Leftrightarrow (2)

Suppose *f* is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous. Let *A* be any non empty subset of *X*.

Then we have to prove that $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A))$.

We know, $A \subseteq f^{-1}(f(A))$.

Also, $f(A) \subseteq c_{\nu_{h\alpha}}(f(A)) \Rightarrow f^{-1}(f(A)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A))).$

Hence, $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A))).$

But $c_{\nu_{h\alpha}}(f(A))$ is ν -h α -closed set in Y and f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

 $\therefore f^{-1}(c_{\nu_{h\alpha}}(f(A))) \text{ is } \mu\text{-}h\alpha\text{-closed set in } X \text{ containing } A.$

But $c_{\mu_{h\alpha}}(A)$ is the smallest μ -h α -closed set in X containing A.

$$\therefore c_{\mu_{h\alpha}}(A) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A))) \Rightarrow f(c_{\mu_{h\alpha}}(A)) \subseteq f(f^{-1}(c_{\nu_{h\alpha}}(f(A)))) \subseteq c_{\nu_{h\alpha}}(f(A)).$$

$$\Rightarrow f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A)).$$

Conversely: Now we show that f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous by showing that inverse image of every ν - $h\alpha$ -closed set in Y is μ - $h\alpha$ -closed set in X.

Let *B* be ν -*h* α -closed set in *Y*.

 $\therefore B = c_{\nu_{h\alpha}}(B)$. Denote, $f^{-1}(B) = A \subseteq X$.

By hypothesis, for the subset A of X we have, $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A))$.

i.e.
$$f\left(c_{\mu_{h\alpha}}(f^{-1}(B))\right) \subseteq c_{\nu_{h\alpha}}\left(f\left(f^{-1}(B)\right)\right) \subseteq c_{\nu_{h\alpha}}(B) = B$$

 $\therefore f\left(c_{\mu_{h\alpha}}(f^{-1}(B))\right) \subseteq B.$
 $\Rightarrow f^{-1}(f\left(c_{\mu_{h\alpha}}(f^{-1}(B))\right)) \subseteq f^{-1}(B).$
 $\therefore c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(B).$
Also, $f^{-1}(B) \subseteq c_{\mu_{h\alpha}}(f^{-1}(B)).$
Hence, $f^{-1}(B) = c_{\mu_{h\alpha}}(f^{-1}(B)), \mu$ -h α -closed set in X .

Thus inverse image of ν -h α -closed set in Y is μ -h α -closed set in X. Hence f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

$$(2) \Leftrightarrow (3)$$

Suppose that, $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A))$ for every $A \subseteq X$. To prove that $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$ for every $B \subseteq Y$ Let *B* be any nonempty subset of *Y* and denote, $f^{-1}(B) = A \subseteq X$. By hypothesis, $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A)) = c_{\nu_{h\alpha}}(f(f^{-1}(B))) \subseteq c_{\nu_{h\alpha}}(B)$ $\therefore f(c_{\mu_{h\alpha}}(f^{-1}(B))) \subseteq c_{\nu_{h\alpha}}(B)$ $\therefore f^{-1}(f(c_{\mu_{h\alpha}}(f^{-1}(B)))) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$ $\Rightarrow c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B)).$ **Conversely:** Suppose for any subset Bof *Y*, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$. Let *A* be any nonempty subset of *X* and denote f(A) = B. By hypothesis, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$

i.e.
$$c_{\mu_{h\alpha}}(f^{-1}(f(A))) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A)))$$

 $\Rightarrow c_{\mu_{h\alpha}}(A) \subseteq c_{\mu_{h\alpha}}(f^{-1}(f(A))) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A)))$
 $\Rightarrow c_{\mu_{h\alpha}}(A) \subseteq f^{-1}(c_{\nu_{h\alpha}}(f(A)))$
 $\Rightarrow f(c_{\mu_{h\alpha}}(A)) \subseteq f(f^{-1}(c_{\nu_{h\alpha}}(f(A)))) \subseteq c_{\nu_{h\alpha}}(f(A))$
i.e. $f(c_{\mu_{h\alpha}}(A)) \subseteq c_{\nu_{h\alpha}}(f(A)).$

 $(1) \Leftrightarrow (3)$

Suppose for any subset *B* of *Y*, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$. Now we show *f* is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous by showing that inverse image of ν -h\alpha-closed set in *Y* is μ -h\alpha-closed set in *X*.

Let $B \subseteq Y$ be ν -h α -closed set. By hypothesis, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$.

To show that $f^{-1}(B)$ is μ -h α -closed set in X we have to show that, $c_{\mu_{h\alpha}}(f^{-1}(B)) = f^{-1}(B)$.

We know,
$$f^{-1}(B) \subseteq c_{\mu_{h\alpha}}(f^{-1}(B))$$

By hypothesis, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B)) = f^{-1}(B)$

Hence,
$$c_{\mu_{h\alpha}}(f^{-1}(B)) = f^{-1}(B)$$

 $\Rightarrow f^{-1}(B)$ is μ -h α -closed set in X.

Hence, inverse image of ν -h α -closed set in *Y* is μ -h α -closed set in *X*.

Hence, f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous.

Conversely: Suppose f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous and B is any nonempty subset of Y. Then we have to show that $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B))$. Denote $f^{-1}(B) = A$.

As f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous thus from above $f(c_{\mu_{h\alpha}}(A)) \subseteq (c_{\nu_{h\alpha}}(f(A)))$.

i.e.
$$f(c_{\mu_{h\alpha}}(f^{-1}(B))) \subseteq c_{\nu_{h\alpha}}(f(f^{-1}(B))).$$

Hence, $f(c_{\mu_{h\alpha}}(f^{-1}(B))) \subseteq c_{\nu_{h\alpha}}(f(f^{-1}(B))) \subseteq c_{\nu_{h\alpha}}(B).$

Thus, $f^{-1}(f(c_{\mu_{h\alpha}}(f^{-1}(B))) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B)).$ i.e. $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(f(c_{\mu_{h\alpha}}(f^{-1}(B))) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B)).$ Hence, $c_{\mu_{h\alpha}}(f^{-1}(B)) \subseteq f^{-1}(c_{\nu_{h\alpha}}(B)).$ **Theorem 3.5:** If $f:(X,\mu_{h\alpha}) \to (Y,\nu_{h\alpha})$ is $(\mu_{h\alpha},\nu_{h\alpha})$ -continuous then $f(X - M_{\mu_{h\alpha}}) \subseteq Y - M_{\nu_{h\alpha}}.$ **Proof:** Let $y \in f(X - M_{\mu_{h\alpha}}).$ Then y = f(x) for some $x \in X - M_{\mu_{h\alpha}}.$ Now, $x \in X - M_{\mu_{h\alpha}} \Rightarrow x \in X$ but $x \notin M_{\mu_{h\alpha}} = \bigcup \{A : A \in \mu_{h\alpha}\}$ i.e. $x \notin A$ for all $A \in \mu_{h\alpha}.$

As $M_{\nu_{h\alpha}}$ is ν -h α -open set and the mapping $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous thus $f^{-1}(M_{\nu_{h\alpha}})$ is μ -h α -open set. i.e. $f^{-1}(M_{\nu_{h\alpha}}) \in \mu_{h\alpha}$.

- Hence, $x \notin f^{-1}(M_{\nu_{h\alpha}})$
- $\Rightarrow f(x) = y \notin M_{\nu_{h\alpha}}$
- $\Rightarrow y \in Y M_{\nu_{h\alpha}}$

i.e. for any $y \in f(X - M_{\mu_{h\alpha}}) \Rightarrow y \in Y - M_{\nu_{h\alpha}} \Rightarrow f(X - M_{\mu_{h\alpha}}) \subseteq Y - M_{\nu_{h\alpha}}$.

Remark 3.6: From above theorem we have $f(X - M_{\mu_{h\alpha}}) \subseteq Y - M_{\nu_{h\alpha}}$.

Taking the inverse on both sides we get, $f^{-1}(f(X - M_{\mu_{h\alpha}})) \subseteq f^{-1}(Y - M_{\nu_{h\alpha}})$

i.e.
$$X - M_{\mu_{h\alpha}} \subseteq f^{-1}(f(X - M_{\mu_{h\alpha}})) \subseteq f^{-1}(Y - M_{\nu_{h\alpha}})$$

$$\Rightarrow X - M_{\mu_{h\alpha}} \subseteq f^{-1}(Y - M_{\nu_{h\alpha}}).$$

Definition 3.7: A mapping $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is said to be $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism if f is bijective, f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous and f^{-1} is $(\nu_{h\alpha}, \mu_{h\alpha})$ -continuous.

A property of sets which is preserved by $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism is called a $(\mu_{h\alpha}, \nu_{h\alpha})$ -topological property.

Definition 3.8: A mapping $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is said to be $(\mu_{h\alpha}, \nu_{h\alpha})$ -closed if the image of every μ -h α -closed set in *X* is ν -h α -closed set in *Y*.

Remark 3.9: It follows from the above definition that f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -closed if and only if $c_{\nu_{h\alpha}}(f(A)) \subseteq f(c_{\mu_{h\alpha}}(A))$.

4. $h\alpha$ - T_0 Space and $h\alpha$ - D_0 Space:

Definition 4.1: μ - $h\alpha$ - T_0 **Space:** A generalized topological space (X, μ) is said to be μ - $h\alpha$ - T_0 if and only if for any $x, y \in M_{\mu h \alpha}, x \neq y, \exists \mu$ - $h\alpha$ -open set A such that $x \in A, y \notin A$ or $y \in A, x \notin A$.

We shall refer to μ - $h\alpha$ - T_0 space for a particular GTS μ in order to prevent ambiguity in $h\alpha$ - T_0 space with regard to GTS.

Theorem 4.2: Let X be a μ - $h\alpha$ - T_0 space and X^{*} be a nonempty subset of X. Then the μ - $h\alpha$ -subspace $(X^*, \mu_{h\alpha}^*)$ is also a μ - $h\alpha$ - T_0 space.(i.e. $h\alpha$ - T_0 is a hereditary property.)

Proof: Let $x, y \in M_{\mu_{h\alpha}}^*$ such that $x \neq y$.

But $M_{\mu_{h\alpha}}^* \subseteq M_{\mu_{h\alpha}} \Rightarrow x, y \in M_{\mu_{h\alpha}}$ with $x \neq y$. As *X* is μ -h α - T_0 space. Thus for $x, y \in M_{\mu_{h\alpha}}$ with $x \neq y$ there exists $A \in \mu_{h\alpha}$ such that either $x \in A, y \notin A$ or $y \in A, x \notin A$.

Suppose $x \in A$ and $y \notin A$. Now as $x, y \in M_{\mu_{h\alpha}}^* \subseteq X^* \Rightarrow x, y \in X^*$.

Thus we get, $x \in A \cap X^*$ but $y \notin A \cap X^*$.

As $A \in \mu_{h\alpha} \Rightarrow A \cap X^* \in \mu_{h\alpha}^*$.

Thus for any $x, y \in M_{\mu_{h\alpha}}^*$ with $x \neq y$ there exists $A \cap X^* \in \mu_{h\alpha}^*$ such that $x \in A \cap X^*$ but $y \notin A \cap X^*$.

 \Rightarrow (X^{*}, $\mu_{h\alpha}^{*}$) is a μ -h α -T₀ space.

Thus every μ -h α -subspace of a μ -h α - T_0 space is also μ -h α - T_0 .

Hence μ -*h* α -*T*₀ is a hereditary property.

Theorem 4.3: If $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism and $(X, \mu_{h\alpha})$ is a μ - $h\alpha$ - T_0 space then $(Y, \nu_{h\alpha})$ is a ν - $h\alpha$ - T_0 space. (i.e. $h\alpha$ - T_0 is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -topological property.)

Proof: Let $y_1, y_2 \in M_{\nu_{h\alpha}}$ with $y_1 \neq y_2$.

For $y_1, y_2 \in M_{v_{h\alpha}} \subseteq Y \Rightarrow y_1, y_2 \in Y = f(X)$.

 \Rightarrow $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for some $x_1, x_2 \in X$.

As the mapping *f* is bijective and $y_1 \neq y_2 \Rightarrow x_1 \neq x_2$.

Also, $y_1, y_2 \in M_{\nu_{h\alpha}} \Rightarrow y_1, y_2 \notin Y - M_{\nu_{h\alpha}}$ i.e. $f(x_1), f(x_2) \notin Y - M_{\nu_{h\alpha}}$.

The mapping f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism and hence, $f(X - M_{\mu_{h\alpha}}) \subseteq Y - M_{\nu_{h\alpha}}$.

 $\therefore f(x_1), f(x_2) \notin f(X - M_{\mu_{h\alpha}}) \Rightarrow x_1, x_2 \notin X - M_{\mu_{h\alpha}}.$

 $\Rightarrow x_1, x_2 \in M_{\mu_{h\alpha}}, x_1 \neq x_2$ and X is a μ -h α -T₀ space.

Hence there exists μ -h α -open set A containing x_1 but not x_2 or containing x_2 but not x_1 .

As A is $\mu - h\alpha$ -open set and the mapping f is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism, hence f(A) is $\nu - h\alpha$ -open set containing $f(x_1)$ but not $f(x_2)$ or containing $f(x_2)$ but not $f(x_1)$.

Hence, $(Y, v_{h\alpha})$ is a $\nu - h\alpha - T_0$ space. i.e. $h\alpha - T_0$ is a $(\mu_{h\alpha}, v_{h\alpha})$ -topological property.

Definition 4.4: $D_{\mu_{h\alpha}}$ -set: A subset *A* of *X* is called a $D_{\mu_{h\alpha}}$ -set if there are two μ -h α -open sets *U* and *V* such that $U \neq X$ and A = U - V.

Remark 4.5: Every μ - $h\alpha$ -open set is $D_{\mu_{h\alpha}}$ -set.

Definition 4.6: μ - $h\alpha$ - D_0 **Space:** A generalized topological space (X, μ) is said to be μ - $h\alpha$ - D_0 if and only if for any $x, y \in M_{\mu h \alpha}, x \neq y, \exists D_{\mu h \alpha}$ -set *A* containing one of them but not the other.

We shall refer to μ - $h\alpha$ - D_0 space for a particular GTS μ in order to prevent ambiguity in $h\alpha$ - D_0 space with regard to GTS.

Proposition 4.7: Every D_{μ} -set is $D_{\mu_{h\alpha}}$ -set.

Proof: Let *A* be a D_{μ} -set of *X*. Thus by definition, there are two μ -open sets *U* and *V* such that $U \neq X$ and A = U - V.

As $U, V \in M_{\mu}$ and $M_{\mu} \subseteq M_{\mu_{h\alpha}}$.

 \Rightarrow $U, V \in M_{\mu_{h\alpha}}$ such that $U \neq X$ and A = U - V.

 $\Rightarrow A \text{ is } D_{\mu_{h\alpha}} \text{-set in } X.$

Thus every D_{μ} -set is $D_{\mu h\alpha}$ -set.

Remark 4.8: The converse of above proposition is not true. We prove it by giving a counter example.

Example 4.9: Let $X = \{1,3,5\}$ and $\mu = \{\emptyset, \{1,3\}, \{1,5\}, X\}, \mu_{\alpha} = \{\emptyset, \{1,3\}, \{1,5\}, X\}, \mu_{h\alpha} = \{\emptyset, \{1\}, \{3\}, \{5\}, \{1,3\}, \{1,5\}, \{3,5\}, X\}$

Here $A = \{1,3\} - \{1\} = \{3\}$ is $D_{\mu_{h\alpha}}$ -set but not a D_{μ} -set. Here $\{1,3\}, \{1,5\}$ are D_{μ} -sets which are also $D_{\mu_{h\alpha}}$ -sets. But there exists $D_{\mu_{h\alpha}}$ -sets which are not D_{μ} -sets.

Proposition 4.10: A generalized topological space (X, μ) is $\mu - h\alpha - T_0$ if and only if it is $\mu - h\alpha - D_0$.

Proof: Let *X* be a μ - $h\alpha$ - T_0 space and $x, y \in M_{\mu_{h\alpha}}$, with $x \neq y$ then by definition of μ - $h\alpha$ - T_0 , $\exists \mu$ - $h\alpha$ -open set *U* such that $x \in U$ but $y \notin U$ or $y \in U$ but $x \notin U$.

Suppose $x \in U$ but $y \notin U$. As U is μ -h α -open set $\Rightarrow U$ is $D_{\mu_{h\alpha}}$ -set. i.e. $\exists D_{\mu_{h\alpha}}$ -setU such that $\in U$, $y \notin U$ or $y \in U$, $x \notin U$.

 \Rightarrow X is a μ -h α -D₀ space.

Conversely: Let(*X*, μ) be μ - $h\alpha$ - D_0 space and $x, y \in M_{\mu_{h\alpha}}$ with $x \neq y$. Then by definition of μ - $h\alpha$ - $D_0, \exists D_{\mu_{h\alpha}}$ -set *A* such that $x \in A, y \notin A$ or $y \in A, x \notin A$.

As *A* is $D_{\mu_{h\alpha}}$ -set thus $\exists U, V \in \mu_{h\alpha}$ such that $U \neq X$ and A = U - V. Now $x \in A \Rightarrow x \in U - V \Rightarrow x \in U$ and $x \notin V$ and $y \notin A = U - V = U \cap CV$ $\Rightarrow y \in C(U \cap CV) = CU \cup V$ $\Rightarrow y \in CU$ or $y \in V$ If $y \in CU \Rightarrow y \notin U$ or if $y \in V \Rightarrow y \in V$ and $x \notin V \Rightarrow X$ is a μ -h α - T_0 space.

Theorem 4.11: A generalized topological space (X, μ) is $\mu - h\alpha - T_0$ if and only if each pair of distinct points $x, y \in M_{\mu_{h\alpha}}, c_{\mu_{h\alpha}}(\{x\}) \neq c_{\mu_{h\alpha}}(\{y\})$.

Proof: Suppose that in *X* for any $x, y \in M_{\mu_{h\alpha}}$, with $x \neq y$, $c_{\mu_{h\alpha}}(\{x\}) \neq c_{\mu_{h\alpha}}(\{y\})$. So there exists $z \in X$ such that *z* is contained in one of them but not the other.

Let us suppose that, $z \in c_{\mu_{h\alpha}}(\{x\})$ but $z \notin c_{\mu_{h\alpha}}(\{y\})$. If we had $x \in c_{\mu_{h\alpha}}(\{y\})$ then $c_{\mu_{h\alpha}}(\{x\}) \subseteq c_{\mu_{h\alpha}}(\{y\}) = c_{\mu_{h\alpha}}(\{y\}).$ [(by theorem 4.16 and by remark 4.12)[20]]

 $\Rightarrow c_{\mu_{h\alpha}}(\{x\}) \subseteq c_{\mu_{h\alpha}}(\{y\})$

⇒ $z \in c_{\mu_{h\alpha}}(\{y\})$. This gives contradiction.

Thus, $x \notin c_{\mu_{h\alpha}}(\{y\}) \Rightarrow x \in C(c_{\mu_{h\alpha}}(\{y\}))$ i.e $C(c_{\mu_{h\alpha}}(\{y\}))$ is μ -h α -open set containing x but not y. Thus, X is μ -h α -T₀ space.

Conversely:

Let X be a μ - $h\alpha$ - T_0 space. Let $x, y \in M_{\mu_{h\alpha}}$ such that $x \neq y$. As X is μ - $h\alpha$ - T_0 thus there exists μ - $h\alpha$ -open set say U containing one of them but not the other.

Suppose $x \in U$, $y \notin U \Rightarrow y \in CU$. As, U is μ - $h\alpha$ -open set $\Rightarrow CU$ is μ - $h\alpha$ -closed set containing y but not x. But $c_{\mu_{h\alpha}}(\{y\})$ is the smallest μ - $h\alpha$ -closed set containing y. Hence $c_{\mu_{h\alpha}}(\{y\}) \subseteq CU$.

As, $x \notin CU \Rightarrow x \notin c_{\mu_{h\alpha}}(\{y\})$

But $x \in c_{\mu_{h\alpha}}(\{x\}) \Rightarrow c_{\mu_{h\alpha}}(\{x\}) \neq c_{\mu_{h\alpha}}(\{y\}).$

Remark 4.12: From proposition 4.10 and from the theorem 4.11, it is observed that "A generalized topological space (X, μ) is μ - $h\alpha$ - D_0 if and only if each pair of distinct points $x, y \in M_{\mu_{h\alpha}}, c_{\mu_{h\alpha}}(\{x\}) \neq c_{\mu_{h\alpha}}(\{y\})$."

5. $h\alpha$ - T_1 space and $h\alpha$ - D_1 space:

Definition 5.1: μ - $h\alpha$ - T_1 **Space:** A generalized topological space (X, μ) is said to be μ - $h\alpha$ - T_1 if and only if for any $x, y \in M_{\mu_{h\alpha}}, x \neq y, \exists \text{ two } \mu$ - $h\alpha$ -open sets U and V such that $x \in U, y \in V$ but $y \notin U$ and $x \notin V$. i.e. $x \in U - V$ and $y \in V - U$.

We shall refer to μ - $h\alpha$ - T_1 space for a particular GTS μ in order to prevent ambiguity in $h\alpha$ - T_1 space with regard to GTS.

Theorem 5.2: Let *X* be a μ - $h\alpha$ - T_1 space and X^* be a nonempty subset of *X*. Then the μ - $h\alpha$ -subspace ($X^*, \mu_{h\alpha}^*$) is also a μ - $h\alpha$ - T_1 space.(i.e. $h\alpha$ - T_1 is a hereditary property.)

Proof: Let $x, y \in M_{\mu_{h\alpha}}^*$ such that $x \neq y$.

But $M_{\mu_{h\alpha}}^* \subseteq M_{\mu_{h\alpha}} \Rightarrow x, y \in M_{\mu_{h\alpha}}$ with $x \neq y$. As X is μ -h α -T₁ space. Thus for $x, y \in M_{\mu_{h\alpha}}$ with $x \neq y$ there exists $A, B \in \mu_{h\alpha}$ such that $x \in A - B$, and $y \in B - A$.

As $x, y \in M_{\mu_{h\alpha}}^* \subseteq X^* \Rightarrow x, y \in X^*$.

 $\Rightarrow x \in A \cap X^*$ but $y \notin A \cap X^*$ and $y \in B \cap X^*$ but $x \notin B \cap X^*$.

As $A, B \in \mu_{h\alpha} \Rightarrow A \cap X^*, B \cap X^* \in \mu_{h\alpha}^*$.

Thus for any $x, y \in M_{\mu_{h\alpha}}^*$ with $x \neq y$ there exists $A, B \in \mu_{h\alpha}$ such that $A \cap X^*, B \cap X^* \in \mu_{h\alpha}^*$ and $x \in A \cap X^*$ but $y \notin A \cap X^*$ and $y \in B \cap X^*$ but $x \notin B \cap X^*$.

 $\Rightarrow (X^*, \mu_{h\alpha}^*)$ is a μ -h α -T₁ space.

Thus every μ -h α -subspace of a μ -h α - T_1 space is also μ -h α - T_1 .

Hence μ - $h\alpha$ - T_1 is a hereditary property.

Theorem 5.3: If $f: (X, \mu_{h\alpha}) \to (Y, \nu_{h\alpha})$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism and $(X, \mu_{h\alpha})$ is a μ - $h\alpha$ - T_1 space then $(Y, \nu_{h\alpha})$ is a ν - $h\alpha$ - T_1 space. (i.e. $h\alpha$ - T_1 is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -topological property.)

Proof: Let $y_1, y_2 \in M_{\nu_{h\alpha}}$ with $y_1 \neq y_2$.

For $y_1, y_2 \in M_{\nu_{h\alpha}} \subseteq Y \Rightarrow y_1, y_2 \in Y = f(X)$.

 \Rightarrow $y_1 = f(x_1)$ and $y_2 = f(x_2)$ for some $x_1, x_2 \in X$.

As the mapping *f* is bijective and $y_1 \neq y_2 \Rightarrow x_1 \neq x_2$.

Also, $y_1, y_2 \in M_{\nu_{h\alpha}} \Rightarrow y_1, y_2 \notin Y - M_{\nu_{h\alpha}}$ i.e. $f(x_1), f(x_2) \notin Y - M_{\nu_{h\alpha}}$.

The mapping f is $(\mu_{h\alpha}, \nu_{h\alpha})$ -continuous and hence $f(X - M_{\mu_{h\alpha}}) \subseteq Y - M_{\nu_{h\alpha}}$.

$$\therefore f(x_1), f(x_2) \notin f(X - M_{\mu_{h\alpha}}) \Rightarrow x_1, x_2 \notin X - M_{\mu_{h\alpha}}.$$

$$\Rightarrow x_1, x_2 \in M_{\mu_{h\alpha}}, x_1 \neq x_2$$
 and X is a μ -h α -T₁ space.

Hence, there exists two μ -h α -open sets say U and V such that $x \in U - V$ and $y \in V - U$. As U and V are μ -h α -open sets and the mapping f is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -homeomorphism, hence f(U), f(V) are ν -h α -open sets such that $f(x) \in f(U) - f(V)$ and $f(y) \in f(V) - f(U)$.

Hence, $(Y, \nu_{h\alpha})$ is a $\nu - h\alpha - T_1$ space. i.e. $h\alpha - T_1$ is a $(\mu_{h\alpha}, \nu_{h\alpha})$ -topological property.

Definition 5.4: μ - $h\alpha$ - D_1 **Space:** A generalized topological space (X, μ) is said to be μ - $h\alpha$ - D_1 if and only if for any $x, y \in M_{\mu h \alpha}$, with $x \neq y \exists$ two $D_{\mu h \alpha}$ -sets say U and V such that $x \in U, y \in V$ but $y \notin U$ and $x \notin V$. i.e. $x \in U - V$ and $y \in V - U$.

We shall refer to μ - $h\alpha$ - D_1 space for a particular GTS μ in order to prevent ambiguity in $h\alpha$ - D_1 space with regard to GTS.

Proposition 5.5: If a generalized topological space (X, μ) is μ - $h\alpha$ - T_1 then it is μ - $h\alpha$ - D_1 .

Proof: Let (X, μ) be μ - $h\alpha$ - T_1 space and $x, y \in M_{\mu_{h\alpha}}$, with $x \neq y$. As X is μ - $h\alpha$ - T_1 then by definition of μ - $h\alpha$ - T_1 , \exists two μ - $h\alpha$ -open sets sayU and V such that $x \in U - V$ and $y \in V - U$.

But every μ - $h\alpha$ -open set is $D_{\mu h\alpha}$ -set. Hence U and V are $D_{\mu h\alpha}$ -sets such that $x \in U - V$ and $y \in V - U$. Hence X is μ - $h\alpha$ - D_1 .

Remark 5.6: But the converse of above proposition is not true.

Theorem 5.7: A generalized topological space (X, μ) is μ - $h\alpha$ - T_1 if and only if for each $x \in M_{\mu_{h\alpha}}$, $\{x\} \cup (X - M_{\mu_{h\alpha}})$ is μ - $h\alpha$ -closed.

Proof: Suppose, (X, μ) is μ - $h\alpha$ - T_1 . Let $x \in M_{\mu_{h\alpha}}$. If $M_{\mu_{h\alpha}} = \{x\}$ then $\{x\} \cup (X - M_{\mu_{h\alpha}}) = X$ is μ - $h\alpha$ -closed.

Now suppose, $M_{\mu h \alpha} - \{x\} \neq \emptyset$. Thus for every $y \in M_{\mu h \alpha} - \{x\} = M_{\mu h \alpha} \cap C\{x\}$ and as X is μ -h α -T₁ there exists two μ -h α -open sets U and V such that $x \in U - V$ and $y \in V - U$.

Now $x \notin V$ i.e. $x \in CV \Rightarrow \{x\} \subseteq CV \Rightarrow V \subseteq C\{x\}$. Hence $y \in V \subseteq C\{x\}$.

As *V* is μ -h α -open set \Rightarrow *V* \subseteq $M_{\mu_{h\alpha}} \Rightarrow$ *V* \subseteq $M_{\mu_{h\alpha}} \cap C\{x\}$.

i.e. for any $y \in M_{\mu_{h\alpha}} \cap C\{x\}$ there exists μ -h α -open set V such that $y \in V \subseteq M_{\mu_{h\alpha}} \cap C\{x\}$.

$$\therefore \bigcup_{y \neq x} \{y\} \subseteq \bigcup_{y \neq x} V \subseteq M_{\mu_{h\alpha}} \cap \mathsf{C}\{x\} \Rightarrow \bigcup_{y \neq x} V = M_{\mu_{h\alpha}} \cap \mathsf{C}\{x\}.$$

But $M_{\mu_{h\alpha}} \cap C\{x\} = C(X - M_{\mu_{h\alpha}}) \cap C\{x\} = C((X - M_{\mu_{h\alpha}}) \cup \{x\}).$

Hence $C((X - M_{\mu_{h\alpha}}) \cup \{x\}) = \bigcup_{y \neq x} V.$

But $\bigcup_{y \neq x} V$, arbitrary union of μ -h α -open sets and hence μ -h α -open set.[20]

Thus $C((X - M_{\mu_{h\alpha}}) \cup \{x\})$ is μ -h α -open set.

 $\Rightarrow \left(\left(X - M_{\mu h \alpha} \right) \cup \{ x \} \right) \text{ is } \mu \text{-}h \alpha \text{-closed set.}$

Conversely:

Suppose for each $x \in M_{\mu_{h\alpha}}$, $(\{x\} \cup (X - M_{\mu_{h\alpha}}))$ is μ -h α -closed set.

We have to show that *X* is μ - $h\alpha$ - T_1 .

Let $x, y \in M_{\mu_{h\alpha}}$ such that $x \neq y$. Then $(\{x\} \cup (X - M_{\mu_{h\alpha}}))$ and $(\{y\} \cup (X - M_{\mu_{h\alpha}}))$ are μ -h α -closed sets. Now $y \in M_{\mu_{h\alpha}} \Rightarrow y \notin X - M_{\mu_{h\alpha}}$. Also $x \neq y \Rightarrow y \notin \{x\}$ i.e. $y \notin (\{x\} \cup (X - M_{\mu_{h\alpha}}))$. $\Rightarrow y \in C(\{x\} \cup (X - M_{\mu_{h\alpha}})), \mu$ -h α -open set. Also, $x \in \{x\} \cup (X - M_{\mu_{h\alpha}}) \Rightarrow x \notin C(\{x\} \cup (X - M_{\mu_{h\alpha}}))$. Thus, we get $C({x} \cup (X - M_{\mu_{h\alpha}}))$ is μ -h α -open set containing y but not x.

Similarly, $C({y} \cup (X - M_{\mu_{h\alpha}}))$ is μ -h α -open set containing x but not y.

Hence X is μ -h α -T₁ space.

6. Relations:

In the above sections, we see the relations between D_{μ} -set and $D_{\mu h\alpha}$ -set, μ - $h\alpha$ - T_0 and μ - $h\alpha$ - D_0 , μ - $h\alpha$ - T_1 and μ - $h\alpha$ - D_1 . Obviously from the definitions 4.6, 5.4, 4.1, 5.1 we have the following results.

Theorem 6.1: If a generalized topological space (X, μ) is μ - $h\alpha$ - T_1 then it is μ - $h\alpha$ - T_0 .

Theorem 6.2: If a generalized topological space (X, μ) is μ - $h\alpha$ - D_1 then it is μ - $h\alpha$ - D_0 .

From the proposition 4.10 and theorem 6.1 we obtain the following result.

Theorem 6.3: If a generalized topological space (X, μ) is μ - $h\alpha$ - T_1 then it is μ - $h\alpha$ - D_0 .

Remark 6.4: But the converse of above results is not true. We provide a counter example to justify it.

Example 6.5: Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, c, d\}\}$

 $\mu_{h\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\} \}, \ M_{\mu_{h\alpha}} = \{a, b, c, d\}$

 $\{c\}, \{b, d\}, \{a, b\}, \{b\}\}.$

Here we observe that X is μ - $h\alpha$ - T_0 , μ - $h\alpha$ - D_0 , μ - $h\alpha$ - D_1 but not μ - $h\alpha$ - T_1 .

The connection between the aforementioned relations is summarized in the diagram below.

References:

- [1] Abdullah, Beyda S. and Askandar, Sabih W and Balo, RuqayahN, $h\alpha$ -Open Sets in Topological Spaces, Journal of Education and Science, Vol.31, (3), 91-98, (2022).
- [2] AP Dhanabalan and C Santhi, A Class of Separation Axioms in Generalized Topology, Mathematical Journal of Interdisciplinary Sciences, Vol.4, (2),151-159, (2016).
- [3] B. K. Tyagi and R.Choudhary, On generalized closure operators in generalized topological spaces, International Journal of Computer Applications, Vol.82, (15), (2013).
- [4] B. K.Tyagi and H.V.S.Chauhan, On some separation axioms in generalized topological spaces, Questions and answers in general topology, Vol.36, (1),9-29, (2018).

- [5] B.K.Tyagi and H.V. Chauhan, On generalized closed sets in generalized topological spaces, CUBO A Mathematical Journal (Temuco), Vol.18, (1), 27-45, 2016.
- [6] Csaszar, A, Generalized open sets, Acta mathematica hungarica, Vol. 75, 65-87,(1997).
- [7] Csaszar, A,Generalized topology, generalized continuity, Acta Mathematica Hungarica,Vol.96, (4),351-357,(2002).
- [8] Csaszar, A, δ -and θ -modifications of generalized topologies, Acta Mathematica Hungarica,Vol. 120,(3),275-279,(2008).
- [9] Dipankar Dey and Mandal, Dhananjay and Mukherjee, Manabendra Nath, Uniformity on generalized topological spaces, Arab Journal of Mathematical Sciences, Vol.28, (2), 184-190,(2022).
- [10] Fadhil, Abbas, On h-open Sets and h-Continuous Function, J. Appl., Compt. Math, Vol.9, 1-5, (2020).
- [11] Hammed, Dunya M, On Arps-closed sets in topological spaces, Engineering and Technology Journal Part (B) Scientific, Vol.32, 271-286, (2014).
- [12] J.L.Kelley Van Nostrand, General Topology, Princeton, New Jersey, 1955.
- [13] K. D. Joshi, Introduction to general topology. New Age International, 1983.
- [14] Khayyeri R., and R. Mohamadian. "On base for generalized topological spaces." Int. J. Contemp. Math. Sciences 48 (2011): 2377-2383.
- [15] Levine, Norman, Generalized closed sets in topology, Rendiconti del Circolo Matematico di Palermo, vol. 19, 89-96, (1970).
- [16] M. S. Sarsak, "Weak separation axioms in generalized topological spaces" Acta Mathematica Hungarica 131 (2011).
- [17] Munkres, James. Topology, Second Edition. Publisher:Prentice Hall India Learning Private Limited.
- [18] M. Jeyaraman, S.C. Vasthirani, O.Ravi and R. Muthuraj, On α^* -sets in Generalized Topological spaces, International Journal of Current Research in Science and Technology Vol.1 (5),39-43, (2015).
- [19] Njastad Olav, On some classes of nearly open sets, Pacific journal of mathematics, Vol. 15, (3), 961-970, (1965).
- [20] S.B.Tadam and K.R. Sharma, On μ - $h\alpha$ -Open sets and μ - $h\alpha$ -Closed sets in Generalized Topological Spaces, Tuijin Jishu, Journal of Propulsion Technology, Vol. 44,(6), 279-287,(2023).
- [21] S.B.Tadam, On Subspaces in Generalized Topological Spaces, Tuijin Jishu, Journal of Propulsion Technology, Vol. 45,(1), 4884-4890,(2024).
- [22] W. J. Pervin, Foundation of General Topology, Publisher: Academic Press.