On μ -h α -Open sets and μ -h α -Closed sets in Generalized Topological Spaces

Dr. S.B.Tadam¹, Ms. K.R.Sharma²

Department of Mathematics, Shri R.L.T. College of Science, Akola, Maharashtra

Abstract: In this paper we present μ -*h*-Open sets, μ -*h* α -Open sets, μ -*h* α -Closed sets, μ -*h* α -interior and μ -*h* α -closure operator in generalized topological spaces(GTS). Their properties, interrelationships and several characterizations are obtained.

Keywords: Generalized topological spaces, μ -h-Open sets, μ -h α -Open sets, μ -h α -neighborhood system, μ -h α -limit points, μ -h α -Closed sets, μ -h α -interior and μ -h α -closure operator in generalized topological spaces.

1. Introduction and Preliminaries:

A concept of α -open set in topological space was initiated by O. Najastad [14]. A Fadhil [4] introduced hopen set in topological spaces. Further this study extended to $h\alpha$ -open set in topological spaces by B. S. Abdullah, Sabh W. Askandar, Ruqayah N. Balo [8]. The aim of this paper is to introduce and study the properties of μ - $h\alpha$ -Open sets and μ - $h\alpha$ -Closed sets in generalized topological spaces (GTS), introduced by A. Csaszar [2] which is not close in condition of intersection, specifically they are close in arbitrary union. Let X be a non empty set and $\mathcal{P}(X)$ be the power set of X. A subset μ of $\mathcal{P}(X)$ is called a generalized topology (GT, for short) on X if μ is closed under arbitrary union. (X, μ) is called a generalized topological space (GTS) [2].The members of μ are called μ -open sets and their complement are called μ -closed sets. In GTS (X, μ) , we define $M_{\mu} = \cup \{U: U \in \mu\}$. A GTS (X, μ) is called strong if $M_{\mu} = X$ [7]. It is well known that generalized topology in the sense of Csaszar [2] is a generalization of topology on set.

In this paper, we look into the relationships among μ -open set, α -open set and μ -h α open sets in generalized topological space in section 2. Subsequently in section 3 we introduce and studied μ -h α -interior and μ -h α neighborhoods and its properties. At last in the series we look at μ -h α -limit point, μ -h α closed set, μ -h α - closure operator and its properties in section 4.

Here in this introduction, some definitions and basic concepts in topological space and generalized topological space have been given.

In topological space (X, \mathcal{T}) we denote the interior (resp. closure) of a subset A of X by i(A), (c(A)).

Definition 1.1: A subset A of a topological space (X, \mathcal{T}) is said to be

1. α -open set denoted by (α -os) [14] if $A \subseteq i(c(i(A)))$

2.*h*-open set denoted by (*h*-os) [4] if for each set that is not empty U in X, $U \neq X$ and $U \in \mathcal{T}$, as a result $A \subseteq i(A \cup U)$.

Definition 1.2: [8] A subset A of a topological space (X, \mathcal{T}) is said to be $h\alpha$ -open set denoted by $(h\alpha$ -os) if for each set that is not empty U in X, $U \neq X$ and U is $(\alpha$ -os), as a result $A \subseteq i(A \cup U)$. The complement of the $h\alpha$ -open set is named $h\alpha$ -closed set denoted by $(h\alpha$ -cs).

Lemma 1.3: [4] Each open set in a topological space is (*h*-os).

Lemma 1.4: [14] Each open set in a topological space is (α -os).

Lemma 1.5: [8] Each (*h*-os) in a topological space is ($h\alpha$ -os).

Lemma 1.6: [8] Any open set in a topological space is $(h\alpha \text{-os})$.

Definition 1.7: Let (X, μ) be a GTS and A be a non empty subset of X.

1. μ -interior of A: [10] The interior of a subset A of X is $i_{\mu}(A) = \bigcup \{G_{\mu} : G_{\mu} \in \mu, G_{\mu} \subseteq A\}$

i.e. union of all μ -open set contained in A.

2. μ -closure of *A*: [10] The μ -closure of a subset A of *X* is $c_{\mu}(A) = \bigcap \{F_{\mu}: F_{\mu}-\mu$ -closed set, $A \subseteq F_{\mu}\}$ i.e. intersection of all μ -closed set containing A.

Remark 1.8: Here μ -interior and μ -closure operators on a GTS (X, μ) satisfy the following properties:

1. $i_{\mu}(A) \subseteq A \subseteq c_{\mu}(A)$, for all $A \subseteq X$.

2. If $A \subseteq B \subseteq X$ then $i_{\mu}(A) \subseteq i_{\mu}(B)$ and $c_{\mu}(A) \subseteq c_{\mu}(B)$.

Definition 1.9: [9] A subset *A* of a generalized topological space(X, μ) is:

1. μ -semiopen set in *X* if $A \subset c_{\mu}(i_{\mu}(A))$.

2. μ - α -open set if $A \subset i_{\mu}(c_{\mu}(i_{\mu}(A)))$.

3. μ - β -open set if $A \subset c_{\mu}(i_{\mu}(c_{\mu}(A)))$.

2. μ -h α - Open Sets in Generalized Topological Spaces:

Definition 2.1: A subset *A* of a generalized topological space *X* is μ -*h*-open set if for each $U \neq \emptyset$ in *X*, $U \neq X$ and $U \in \mu$, $A \subset i_{\mu}(A \cup U)$. We denote the collection of all $(\mu$ -*h*-os) in GTS *X* by μ_h . i.e. $\mu_h = \{A : A \text{ is } \mu$ -*h*-open set in *X*\}.

Definition 2.2: A subset *A* of GTS *X* is said to be μ - $h\alpha$ -open set denoted by (μ - $h\alpha$ -os) if for each set that is not empty *U* in *X*, $U \neq X$ and *U* is μ - α open such that $A \subseteq i_{\mu}(A \cup U)$. We denote the collection of all (μ - $h\alpha$ -os) in GTS *X* by $\mu_{h\alpha}$. i.e. $\mu_{h\alpha} = \{A : A \text{ is } \mu$ - $h\alpha$ -open set in *X*\}.

We define $M_{\mu_{h\alpha}} = \bigcup \{A : A \in \mu_{h\alpha}\}.$

The set which is not μ - $h\alpha$ -open is called μ - $h\alpha$ -closed set denoted by (μ - $h\alpha$ -cs). We denote the collection of all (μ - $h\alpha$ -cs) in GTS X by $\mathcal{F}_{\mu_{h\alpha}}$. i.e. $\mathcal{F}_{\mu_{h\alpha}} = \{F : F \text{ is } \mu$ - $h\alpha$ -closed set in X}.

Proposition 2.3: Each μ -open set in GTS is μ -h- open set.

Proof: Let (X, μ) be a GTS and *A* be an μ -open set in *X*.

To show that A is μ -h-open set, we have to show for each $U \neq \emptyset$ in X, $U \neq X$ and $U \in \mu$, $A \subset i_{\mu}(A \cup U)$.

We know $A \subseteq A \cup U$, for each set $U \in \mu$

$$\Rightarrow i_{\mu}(A) \subseteq i_{\mu}(A \cup U)$$

 $\Rightarrow A \subseteq i_{\mu}(A \cup U) \qquad (\because A \in \mu, A = i_{\mu}(A))$

Hence each μ -open set in GTS X is μ -h-open set.

Remark 2.4: The converse of the above proposition is not true. We justify it through the following example.

Example 2.5: Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, \{a, c\}\}$, $\mu_h = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Here we observe that, each μ -open set is μ -*h*-open set but $\{c\}$ is μ -*h*-open set which is not a μ -open set.

Proposition 2.6: Each μ -open set in GTS *X* is μ - α -open set.

Proof: Let (X, μ) be a GTS and A be an μ -open set in X.

To show that A is μ - α -open set, we have to show $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$

Since $A \in \mu$, $A = i_{\mu}(A)$(1) Also $A \subseteq c_{\mu}(A) = c_{\mu}(i_{\mu}(A))$ i.e. $A \subseteq c_{\mu}(i_{\mu}(A))$ $\therefore i_{\mu}(A) \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$ $\Rightarrow A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$ (from(1)) $\Rightarrow A \text{ is } \mu - \alpha \text{ - open set.}$

Hence each μ -open set in GTS *X* is μ - α -open set.

Proposition 2.7: Each μ -h- open set in GTS X is μ - $h\alpha$ -open set.

Proof: Let (X, μ) be a GTS and A be an μ -h-open set in X. Thus for each $U \neq \emptyset$ in X, $U \neq X$ and $U \in \mu$, we have $A \subset i_{\mu}(A \cup U)$. Since by Proposition 2.6, each μ -open set in GTS X is μ - α -open set, $U \in \mu_{\alpha}$. Thus for each set $U \neq \emptyset$ in X, $U \neq X$ and $U \in \mu_{\alpha}$, we have $A \subset i_{\mu}(A \cup U)$.

 \Rightarrow A is μ -h α -open set. Hence each μ -h- open set in GTS X is μ -h α -open set.

Remark 2.8: From Proposition 2.3 and 2.7 we get, each μ -open set in GTS X is μ -h α -open set and hence $M_{\mu} \subseteq M_{\mu h\alpha}$. But the converse of the proposition 2.6 and 2.7 are not true. We justify it by giving a counter example.

Example 2.9: Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, \{a, b, c, d\}, \{a, b, c,$

 $\mu_{\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\},\$

 $\mu_h = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, \text{ and }$

 $\mu_{h\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\} \}.$

Here we observe that, each μ -open set is μ - α -open set but $\{a, b\}$ is μ - α -open set which is not μ -open. i.e. the converse of the proposition 2.6 is not true. Also, each μ -h- open set is μ - $h\alpha$ -open set but $\{b, c, d\}$ is a μ - $h\alpha$ -open set which is not μ -h- open. Hence the converse of the proposition 2.7 is not true.

In this example we also observed that, $\{a, b\}$ is μ - α -open set which is not μ - $h\alpha$ -open and $\{b, c, d\}$ is μ - $h\alpha$ -open but not μ - α -open set. Hence there is no relationship between μ - $h\alpha$ -open set and μ - α -open set.

Theorem 2.10: In a GTS X, arbitrary union of μ -h α -open set is μ -h α -open set.

Proof: Let (X, μ) be a GTS and $\{G_{\lambda}\}$ be any arbitrary collection of μ - $h\alpha$ -open sets in X. To show that $\bigcup_{\lambda} G_{\lambda}$ is μ - $h\alpha$ -open set in X we have to show that for each set that is not empty U in X, $U \neq X$ and U is μ - α open such that $\bigcup_{\lambda} G_{\lambda} \subseteq i_{\mu}((\bigcup_{\lambda} G_{\lambda}) \cup U)$.

Let U be any non empty proper subset of X, such that U is μ - α open in X then we have to show that

$\cup_{\lambda} G_{\lambda} \subseteq l_{\mu}((\cup_{\lambda} G_{\lambda}) \cup U).$	
Let $x \in \bigcup_{\lambda} G_{\lambda} \Rightarrow x \in G_{\lambda}$ for some λ	(2)
As G_{λ} is μ -h α -open set in $X \Rightarrow G_{\lambda} \subseteq i_{\mu}(G_{\lambda} \cup U)$	
i.e. $G_{\lambda} \subseteq i_{\mu}(G_{\lambda} \cup U) \subseteq i_{\mu}((\cup_{\lambda} G_{\lambda}) \cup U)$	
$\Rightarrow G_{\lambda} \subseteq i_{\mu}((\cup_{\lambda} G_{\lambda}) \cup U)$	(3)
From (2) and (3) we get, $x \in i_{\mu}((\cup_{\lambda} G_{\lambda}) \cup U)$	(4)
From (2) and (4) we get, $\cup_{\lambda} G_{\lambda} \subseteq i_{\mu}((\cup_{\lambda} G_{\lambda}) \cup U)$	
Hence, $\cup_{\lambda} G_{\lambda}$ is μ -h α -open sets in X.	

Remark 2.11:

i] Applying DeMorgan's law to the above theorem we get the following result.

In a GTS X, arbitrary intersection of μ -h α -closed set is μ -h α -closed set.

ii] The following example shows that finite intersection of μ -h α -open set need not be μ -h α -Open set.

Example 2.12: Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, \{a, b, c, d\}, \{a, b, c$

 $\mu_{\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}$ and

 $\mu_{h\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}.$ Here $\{a, b, c\}$ and $\{a, b, d\}$ are μ -h α -open sets but their intersection $\{a, b, d\} \cap \{b, c, d\} = \{b, d\} \notin \mu_{h\alpha}$. Thus, finite intersection of μ -h α -open set need not be μ -h α -open set.

Remark 2.13:

From theorem 2.10 and example 2.12, it is observed that $(X, \mu_{h\alpha})$ is a generalized topological space but not a topological space.

3. μ -h α -Interior and μ -h α -Neighborhoods in Generalized Topological Space:

Definition 3.1: μ -h α -interior of A: The μ -h α -interior of a subset A of a GTS X is the union of all μ -h α -open sets contained in A and will be denoted by $i_{\mu h\alpha}(A)$.i.e. $i_{\mu h\alpha}(A) = \bigcup \{G: G - \mu - h\alpha \text{-open set}, G \subseteq A\}$.

Remark 3.2: From theorem 2.10 we get, $i_{\mu h \alpha}(A)$ is the largest μ -h α -open sets contained in A.

Theorem 3.3: A subset A of a GTS X is μ -h α -open set iff $A = i_{\mu h \alpha}(A)$.

Proof: Let A be a μ -h α -open subset of a GTS X.By definition, $i_{\mu h \alpha}(A) = \bigcup \{G_{\mu h \alpha}: G_{\mu h \alpha} - \mu$ -h α -open set, $G_{\mu_{h\alpha}} \subseteq A$ is the largest μ -h α -open sets contained in A.

i.e.
$$i_{\mu_{h\alpha}}(A) \subseteq A$$
(5)
But A is μ -h α -open set and $A \subseteq A$ hence $A \subseteq i_{\mu_{h\alpha}}(A)$ (6)

But *A* is μ -h α -open set and $A \subseteq A$ hence $A \subseteq i_{\mu_{h\alpha}}(A)$

From (5) and (6) we get, $A = i_{\mu_{h\alpha}}(A)$.

Conversely: Let $A = i_{\mu_{h,\alpha}}(A)$

As $i_{\mu h\alpha}(A)$ is the largest μ -h α -open set, hence A is a μ -h α -open set.

Remark 3.4: μ -h α -interior operators on a GTS X obey the following properties.

i]
$$i_{\mu_{h\alpha}}(i_{\mu_{h\alpha}}(A)) = i_{\mu_{h\alpha}}(A),$$

ii] If $A \subseteq B$ then $i_{\mu_{h\alpha}}(A) \subseteq i_{\mu_{h\alpha}}(B),$
iii] $i_{\mu_{h\alpha}}(A \cap B) \subseteq i_{\mu_{h\alpha}}(A) \cap i_{\mu_{h\alpha}}(B),$

iv] $i_{\mu_{h\alpha}}(A) \cup i_{\mu_{h\alpha}}(B) \subseteq i_{\mu_{h\alpha}}(A \cup B).$

Definition 3.5: In a GTS X, μ -h α -neighborhood of a point x is any set which contains μ -h α -open set containing the point. i.e. E is μ -h α -neighborhood of a point x if there is μ -h α -open set G containing x such that $x \in G \subseteq E$.

Lemma 3.6: In a GTS *X*, *E* is μ -*h* α -neighborhood of a point *x* iff $x \in i_{\mu_{h\alpha}}(E)$.

Proof: Let E be a μ -h α -neighborhood of a point x. Then by definition, there is μ -h α -open set H containing x such that $x \in H \subseteq E$.

 $\Rightarrow x \in H \subseteq \cup \{G: G - \mu - h\alpha \text{-open set}, G \subseteq E\} = i_{\mu_{h\alpha}}(E)$

$$\Rightarrow x \in i_{\mu_{h\alpha}}(E)$$

i.e. if *E* is μ -h α -neighborhood of a point *x* then $x \in i_{\mu_{h\alpha}}(E)$

Conversely: Let $x \in i_{\mu h\alpha}(E)$. By remark 3.2, $i_{\mu h\alpha}(E)$ is the largest μ -h α -open set contained in E.

Thus $i_{\mu h \alpha}(E)$ is the μ -h α -open set such that $x \in i_{\mu h \alpha}(E) \subseteq E$.

 \Rightarrow *E* is μ -*h* α -neighborhood of a point *x*.

Theorem 3.7: In a GTS X, a set is μ -h α -open iff it is a μ -h α -neighborhood of each of its point.

Proof: Let *X* be a GTS and $G \subseteq X$. First suppose that *G* is μ -h α -open. Then for any $x \in G$ we have,

 $x \in G \subseteq G$ and hence G is μ -h α -neighborhood of a point x. Thus G is a μ -h α -neighborhood of each of its point.

Conversely: Suppose G is a μ -h α -neighborhood of each of its points. Then for each $x \in G$, there is μ -h α -open set H_x such that $x \in H_x \subseteq G$. Then $G = \bigcup_{x \in G} H_x$, arbitrary union of μ -h α -open set. Hence by theorem 2.10, G is μ -h α -open set.

Definition 3.8: Let X be a GTS and $x \in X$. Let \mathcal{N}_x be the set of all μ -h α -neighborhoods of x in X. Then the family \mathcal{N}_x is called the μ -h α -neighborhood system at x.

Theorem 3.9: Let X be a GTS and for $x \in X$, let \mathcal{N}_x be the μ -h α -neighborhood system at x. Then,

i] If $U \in \mathcal{N}_x$ then $x \in U$.

ii] If $V \in \mathcal{N}_x$ and $V \subseteq U$ then $U \in \mathcal{N}_x$.

iii] For any $U, V \in \mathcal{N}_x$, $U \cup V \in \mathcal{N}_x$.

iv] A set *G* is μ -h α -open set in *X* iff $G \in \mathcal{N}_x$ for all $x \in G$.

v] If $U \in \mathcal{N}_x$ then there exists $V \in \mathcal{N}_x$ such that $V \subseteq U, V \in \mathcal{N}_y$ for all $y \in V$ and $U \in \mathcal{N}_y$ for all $y \in V$.

Proof: Properties [i] to [iv] are obvious from the definition of neighborhood of a point given in

definition 3.5. Now for [v], consider $U \in \mathcal{N}_x$ i.e. U is μ -h α -neighborhood of a point x. Thus there exist μ -h α -open set V such that $x \in V \subseteq U$. As V is μ -h α -open set then by Theorem 3.7, V is μ -h α -neighborhood of each of its points. i.e. $V \in \mathcal{N}_y$ for all $y \in V$. Also from [ii], $V \subseteq U \Rightarrow U \in \mathcal{N}_y$ for all $y \in V$.

Theorem 3.10: Let *X* be a set and suppose for each $x \in X$, a non-empty family \mathcal{N}_x^* of subsets of *X* is given, satisfying [i], [ii] and [v] of the theorem 3.9 above. Let μ^* be the family of all subsets of *X* which are μ -*h* α -neighborhood of each of their points; i.e. $\mu^* = \{G : x \in G \text{ implies that } G \in \mathcal{N}_x^*\}$. Then μ^* is a generalized topology for *X*, and if \mathcal{N}_x is the collection of all μ -*h* α -neighborhoods of *x* defined by the generalized topology μ^* , then $\mathcal{N}_x^* = \mathcal{N}_x$ for every $x \in X$.

Proof: To show that $\mu^* = \{G : x \in G \text{ implies that } G \in \mathcal{N}_x^*\}$ is a generalized topology for *X*, we have to show that $\emptyset \in \mu^*$ and $\bigcup_{\lambda \in I} G_\lambda \in \mu^*$ where $G_\lambda \in \mu^*$ for every $\lambda \in I \neq \emptyset$. Clearly, $\emptyset \in \mu^*$. Let $G_\lambda \in \mu^*$ for $\lambda \in I \neq \emptyset$ and $x \in \bigcup_{\lambda \in I} G_\lambda$. Now $x \in \bigcup_{\lambda \in I} G_\lambda \Rightarrow x \in G_\lambda$ for some $\lambda \in I$. By definition of μ^* , $x \in G_\lambda \Rightarrow G_\lambda \in \mathcal{N}_x^*$. As, $G_\lambda \in \mathcal{N}_x^*$ and $G_\lambda \subseteq \bigcup_{\lambda \in I} G_\lambda$ thus by theorem 3.9 [ii], $\bigcup_{\lambda \in I} G_\lambda \in \mathcal{N}_x^*$. i.e. $x \in \bigcup_{\lambda \in I} G_\lambda \Rightarrow \bigcup_{\lambda \in I} G_\lambda \in \mathcal{N}_x^*$. Hence $\bigcup_{\lambda \in I} G_\lambda \in \mu^*$.

 $(\mathcal{N}_x^* = \mathcal{N}_x)$: If $N \in \mathcal{N}_x$, i.e. N is μ -h α -neighborhoods of x then there exists $G \in \mu^*$ such that $x \in G \subseteq N$. From the definition of μ^* , $x \in G$ implies that $G \in \mathcal{N}_x^*$ and hence $N \in \mathcal{N}_x^*$ by [ii]. Thus $\mathcal{N}_x \subseteq \mathcal{N}_x^*$.

Now suppose that $N \in \mathcal{N}_x^*$. Let us define the set *G* as, $G = \{y : N \text{ is the } \mu - h\alpha - \text{neighborhoods of } y\}$ to be all points which have *N* as a $\mu - h\alpha$ -neighborhood. Clearly, $x \in G$, while by [i], every point with *N* as a $\mu - h\alpha$ -neighborhood is in *N*, so $y \in N \forall y \in G$ implies that $G \subseteq N$. Now we will show that $G \in \mu^*$; i.e., for every $y \in G$ implies that $G \in \mathcal{N}_y^*$. Let $y \in G$, so that *N* is the $\mu - h\alpha$ -neighborhood of *y* i.e. $N \in \mathcal{N}_y^*$. By [v], there exists a set N^* such that $N^* \in \mathcal{N}_y^*$, and if $z \in N^*$ then $N \in \mathcal{N}_z^*$. The definition of *G* shows that $N \in \mathcal{N}_z^*$ implies that $z \in G$, hence, $N^* \subseteq G$ and, by [ii], $G \in \mathcal{N}_y^*$.

4. μ -h α -Closed sets in Generalized Topological Spaces:

Definition 4.1: For a GTS X, a point $x \in M_{\mu_{h\alpha}}$ is a μ - $h\alpha$ -limit point of a subset E iff every μ - $h\alpha$ -open set containing x contains a point of E different from x; i.e. if $x \in G \in \mu_{h\alpha}$, then $E \cap G - \{x\} \neq \emptyset$. The set of all μ - $h\alpha$ -limit points of a set E is called the μ - $h\alpha$ -derived set of E and is denoted by $d_{\mu_{h\alpha}}(E)$.

Example 4.2: Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$, $\mu_{\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}$ and

 $\mu_{h\alpha} = \{\emptyset, \{a\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}, M_{\mu_{h\alpha}} = \{a, b, c, d\}.$ Then the point $b, c \in M_{\mu_{h\alpha}}$ are μ -h α -limit points of a subset $A = \{a, b, d, e\}$ of X. i.e. $d_{\mu_{h\alpha}}(A) = \{b, c\}$. Points $b, c \in M_{\mu_{h\alpha}}$ are μ -h α -limit point of a subset $B = \{a, b, c, e\}$ of X. i.e. $d_{\mu_{h\alpha}}(B) = \{b, c\}$. But $a, d \in M_{\mu_{h\alpha}}$ are not μ -h α -limit points since $\{a\}$ and $\{d\}$ are μ -h α -open sets.

Theorem 4.3: If A, and B are subsets of the GTS X, then the μ -h α -derived set has the following properties:

i]
$$d_{\mu_{h\alpha}}(\emptyset) = \emptyset$$
,

ii] If $A \subseteq B$ then $d_{\mu_{h\alpha}}(A) \subseteq d_{\mu_{h\alpha}}(B)$,

iii] If $x \in d_{\mu_{h\alpha}}(A)$ then $x \in d_{\mu_{h\alpha}}(A - \{x\})$,

iv] $d_{\mu_{h\alpha}}(A \cap B) \subseteq d_{\mu_{h\alpha}}(A) \cap d_{\mu_{h\alpha}}(B),$

v] $d_{\mu_{h\alpha}}(A) \cup d_{\mu_{h\alpha}}(B) \subseteq d_{\mu_{h\alpha}}(A \cup B).$

Remark 4.4: Converse of the theorem 4.3 [iv] and [v] are not true. We justify it through the following example. **Example 4.5:** Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{a, d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\},$

 $\mu_{a} = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}$ and

 $\mu_{h\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\} \}, M_{\mu_{h\alpha}} = \{a, b, c, d\}.$

For the subset $P = \{a, c, e\} \subseteq X$, $d_{\mu_{h\alpha}}(P) = \{b\}$ and for the subset $Q = \{b, c, d, e\} \subseteq X$, $d_{\mu_{h\alpha}}(Q) = \{b, c\}$. Thus for the subset $P \cap Q = \{c, e\} \subseteq X$, $d_{\mu_{h\alpha}}(P \cap Q) = \emptyset$. Here we observed that $\{b\} \notin \emptyset$ i.e. $d_{\mu_{h\alpha}}(P) \cap d_{\mu_{h\alpha}}(Q) \notin d_{\mu_{h\alpha}}(P \cap Q)$.

For the subset $A = \{a, b\} \subseteq X$, $d_{\mu_{h\alpha}}(A) = \{c\}$ and for the subset $B = \{b, c\} \subseteq X$, $d_{\mu_{h\alpha}}(B) = \{c\}$. Thus for the subset $A \cup B = \{a, b, c\} \subseteq X$, $d_{\mu_{h\alpha}}(A \cup B) = \{b, c\}$. Here we observed that $\{b, c\} \not\subseteq \{c\}$ i.e. $d_{\mu_{h\alpha}}(A \cup B) \not\subseteq d_{\mu_{h\alpha}}(A) \cup d_{\mu_{h\alpha}}(B)$.

Theorem 4.6: If *F* is μ -*h* α -closed subset of a GTS *X* then it contain all its μ -*h* α -limit points i.e. $d_{\mu_{h\alpha}}(F) \subseteq F$.

Proof: Suppose *F* is μ - $h\alpha$ -closed set in a GTS *X*. We have to show that *F* contain all its μ - $h\alpha$ -limit points. Let *x* be any μ - $h\alpha$ -limit point of *F*. Then to show that $x \in F$. Suppose $x \notin F$.

i.e. $x \in CF$. As *F* is μ - $h\alpha$ -closed set $\Rightarrow CF$ is μ - $h\alpha$ -open set. i.e. *CF* is μ - $h\alpha$ -open set containing *x*. Thus by definition of μ - $h\alpha$ -limit point, $CF \cap F - \{x\} \neq \emptyset$. This gives contradiction and hence our assumption that $x \notin F$ is wrong. Hence $x \in F$. Thus *F* contain all its μ - $h\alpha$ -limit points.

Remark 4.7: Following example shows that the converse of the above theorem need not be true.

Example 4.8: Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}$, $\mu_{\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, c, d\}\}$ and

 $\mu_{h\alpha} = \{\emptyset, \{a\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}, M_{\mu_{h\alpha}} = \{a, b, c, d\}.$ Then the points $b, c \in M_{\mu_{h\alpha}}$ are μ -h α -limit points of a subset $A = \{a, b, c, d\}$ of X. i.e. $d_{\mu_{h\alpha}}(A) = \{b, c\}$. Here $d_{\mu_{h\alpha}}(A) \subseteq A$ but A is not μ -h α -closed subset of a GTS X.

Definition 4.9: The μ - $h\alpha$ -closure of a subset F of GTS X is the intersection of all μ - $h\alpha$ -closed set containing F. i.e. $c_{\mu_{h\alpha}}(F) = \cap \{H: H \text{ is } \mu - h\alpha \text{-closed set}, F \subseteq H\}.$

Theorem 4.10: A subset *F* of a GTS *X* is μ -h α -closed set iff $F = c_{\mu_{h\alpha}}(F)$.

Proof: Let *F* be a μ -h α -closed subset of a GTS *X*. By definition, $c_{\mu_{h\alpha}}(F) = \cap \{H: H - \mu - h\alpha \text{-closed set}, F \subseteq H\}$ is the smallest μ -h α -closed set containing *F*. i.e. $F \subseteq c_{\mu_{h\alpha}}(F)$ (7)

But *F* is μ -h α -closed set and $F \subseteq F$ hence $c_{\mu_{h\alpha}}(F) \subseteq F$ (8) From (7) and (8) we get, $F = c_{\mu_{h\alpha}}(F)$.

Conversely: Let $F = c_{\mu_{h\alpha}}(F)$

As $c_{\mu h \alpha}(F)$ is the smallest μ -h α -closed set containing F, hence F is μ -h α -closed set.

Theorem 4.11: For any set A in a GTS X, $x \in c_{\mu_{h\alpha}}(A)$ iff $x \in U \in \mu_{h\alpha}$ implies $U \cap A \neq \emptyset$.

Proof: Let $x \in c_{\mu_{h\alpha}}(A)$ and $x \in U \in \mu_{h\alpha}$. Then to show that $U \cap A \neq \emptyset$. Suppose $U \cap A = \emptyset \Rightarrow A \subseteq CU$. As U is μ -h α -open set then CU is μ -h α -closed set. i.e. CU is μ -h α -closed set containing A and $c_{\mu_{h\alpha}}(A)$ is the smallest μ -h α -closed set containing A. Hence $c_{\mu_{h\alpha}}(A) \subseteq CU$. $\therefore x \in c_{\mu_{h\alpha}}(A) \subseteq CU \Rightarrow x \in CU$. This gives contradiction since $x \in U$. Hence our assumption that $U \cap A = \emptyset$ is wrong. Thus $U \cap A \neq \emptyset$.

Conversely: Suppose $x \in U \in \mu_{h\alpha}$ implies $U \cap A \neq \emptyset$.

Now $U \cap A \neq \emptyset \Rightarrow U \cap A = \{x\}$ or $U \cap A - \{x\} \neq \emptyset$.

$$U \cap A = \{x\} \Rightarrow x \in A \subseteq c_{\mu_{h\alpha}}(A) \text{ i.e. } x \in c_{\mu_{h\alpha}}(A)$$

$$U \cap A - \{x\} \neq \emptyset \Rightarrow x \in d_{\mu_{h\alpha}}(A) \subseteq c_{\mu_{h\alpha}}(A) \text{ i.e. } x \in c_{\mu_{h\alpha}}(A).$$

Thus in both cases we get $x \in c_{\mu_{h\alpha}}(A)$.

Remark 4.12: μ -h α -closure operators on a GTS X obey the following properties, for any subset E of X.

i] $c_{\mu_{h\alpha}}(\phi) = X - M_{\mu_{h\alpha}}$ except for $X = M_{\mu_{h\alpha}}$,

ii]
$$E \subseteq c_{\mu_{h\alpha}}(E)$$
,

iii] $c_{\mu_{h\alpha}}(c_{\mu_{h\alpha}}(E)) = c_{\mu_{h\alpha}}(E),$

iv] $c_{\mu h \alpha}(E)$ is the smallest μ -h α -closed set containing E.

v]
$$E \cup d_{\mu_{h\alpha}}(E) \subseteq c_{\mu_{h\alpha}}(E)$$
.

Remark 4.13: Converse of the Remark 4.12[v] is not true. We justify it through the following example.

Example 4.14: Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, \{a, b, c, d\}, \{a, b, c$

 $\mu_{\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \} \text{ and }$

 $\mu_{h\alpha} = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\}\}, M_{\mu_{h\alpha}} = \{a, b, c, d\}.$ $\mathcal{F}_{\mu_{h\alpha}} = \{X, \{b, c, d, e\}, \{a, b, c, e\}, \{b, c, e\}, \{d, e\}, \{c, e\}, \{a, e\}, \{e\}\} \text{ For the subset } A = \{a, b\} \subseteq X, d_{\mu_{h\alpha}}(A) = \{c\} \text{ and } c_{\mu_{h\alpha}}(A) = X \cap \{a, b, c, e\} = \{a, b, c, e\}. \text{ Here we observed that } \{a, b\} \cup \{c\} = \{a, b, c\} \not\subseteq \{a, b, c, e\} \text{ i.e.}$ $A \cup d_{\mu_{h\alpha}}(A) \subseteq c_{\mu_{h\alpha}}(A).$

Theorem 4.15: Relation between μ - $h\alpha$ -interior and μ - $h\alpha$ - closure operator in a GTS X.

Let *E* be any subset of a GTS *X*. Then

i]
$$i_{\mu h \alpha}(E) = C c_{\mu h \alpha}(CE)$$
. i.e. $i_{\mu h \alpha}(E) = X - c_{\mu h \alpha}(X - E)$,
ii] $c_{\mu h \alpha}(E) = C i_{\mu h \alpha}(CE)$ i.e. $c_{\mu h \alpha}(E) = X - i_{\mu h \alpha}(X - E)$.

Proof: We know in a GTS(*X*, μ), $i_{\mu_{h\alpha}}(E) \subseteq E$.

 $\Rightarrow C(i_{\mu_{h\alpha}}(E)) \supseteq C(E)$ (by taking the complement on both sides)

$$\Rightarrow c_{\mu_{h\alpha}}(C(i_{\mu_{h\alpha}}(E))) \supseteq c_{\mu_{h\alpha}}(C(E)) \quad \text{(by taking the } \mu\text{-}h\alpha\text{-}closures \text{ on both sides)}$$

As $i_{\mu h\alpha}(E)$ is μ -h α -open set thus $C(i_{\mu h\alpha}(E))$ is μ -h α -closed set and hence

$$c_{\mu_{h\alpha}}\left(C\left(i_{\mu_{h\alpha}}(E)\right)\right) = C\left(i_{\mu_{h\alpha}}(E)\right)$$

$$\Rightarrow C\left(i_{\mu_{h\alpha}}(E)\right) \supseteq c_{\mu_{h\alpha}}(C(E))$$

$$\Rightarrow i_{\mu_{h\alpha}}(E) \subseteq C(c_{\mu_{h\alpha}}(C(E))) \qquad (by taking the complement on both sides) \qquad \dots \dots (9)$$

As $c_{\mu_{h\alpha}}(CE)$ is the smallest μ -h α -closed set containing CE i.e. $CE \subseteq c_{\mu_{h\alpha}}(CE)$

 $\Rightarrow C(c_{\mu_{h\alpha}}(C(E))) \text{ is } \mu\text{-}h\alpha\text{-}\text{open set and } C\left(c_{\mu_{h\alpha}}(C(E))\right) \subseteq C(CE) = E$

i.e. $C(c_{\mu_{h\alpha}}(C(E)))$ is μ -h α -open set contained in E and $i_{\mu_{h\alpha}}(E)$ is the largest μ -h α -open set contained in E. Hence $C(c_{\mu_{h\alpha}}(C(E))) \subseteq i_{\mu_{h\alpha}}(E)$ (10)

Thus from (9) and (10) we get, $i_{\mu_{h\alpha}}(E) = Cc_{\mu_{h\alpha}}(CE) = X - c_{\mu_{h\alpha}}(X - E)$ (11)

In (11) replace E by CE and taking complement on both sides we get,

$$C(i_{\mu_{h\alpha}}(CE)) = c_{\mu_{h\alpha}}(E) \text{ i.e. } c_{\mu_{h\alpha}}(E) = X - (i_{\mu_{h\alpha}}(X - E)).$$

Theorem 4.16: If A and B be any two subsets of a GTS X then

i] If $A \subseteq B$ then $c_{\mu_{h\alpha}}(A) \subseteq c_{\mu_{h\alpha}}(B)$,

ii] $c_{\mu_{h\alpha}}(A) \cup c_{\mu_{h\alpha}}(B) \subseteq c_{\mu_{h\alpha}}(A \cup B),$

iii] $c_{\mu_{h\alpha}}(A \cap B) \subseteq c_{\mu_{h\alpha}}(A) \cap c_{\mu_{h\alpha}}(B).$

Proof: [i] Let *A* and *B* be any two subsets of a GTS *X* such that $A \subseteq B$.

By theorem 4.15, $c_{\mu_{h\alpha}}(A) = X - i_{\mu_{h\alpha}}(X - A)$.

As $A \subseteq B \Rightarrow X - B \subseteq X - A \Rightarrow i_{\mu_{h\alpha}}(X - B) \subseteq i_{\mu_{h\alpha}}(X - A) \Rightarrow X - i_{\mu_{h\alpha}}(X - A) \subseteq X - i_{\mu_{h\alpha}}(X - B)$. *B*.i.e. $c_{\mu_{h\alpha}}(A) \subseteq c_{\mu_{h\alpha}}(B)$.

The proof of [ii] and [iii] follows clearly from [i].

Remark 4.17: Converse of the theorem 4.16 [ii] and [iii] are not true. We justify it through the following example.

Example 4.18: Let $X = \{a, b, c, d, e\}, \mu = \{\emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}\}, \{a, b, c, d\}, \{a, b, c$

 $\mu_{\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \} \text{ and }$

 $\mu_{h\alpha} = \{ \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c, d\} \}, M_{\mu_{h\alpha}} = \{a, b, c, d\}.$

For the subset $A = \{a\} \subseteq X$, $c_{\mu_{h\alpha}}(A) = \{a, e\}$ and for the subset $B = \{d\} \subseteq X$, $c_{\mu_{h\alpha}}(B) = \{d, e\}$. Thus for the subset $A \cup B = \{a, d\} \subseteq X$, $c_{\mu_{h\alpha}}(A \cup B) = X$. Here we observed that $\{a, e\} \cup \{d, e\} = \{a, d, e\} \subsetneq X$. i.e. $c_{\mu_{h\alpha}}(A) \cup c_{\mu_{h\alpha}}(B) \subsetneq c_{\mu_{h\alpha}}(A \cup B)$.

Also for the subset $P = \{b, c, d\} \subseteq X$, $c_{\mu_{h\alpha}}(P) = \{b, c, d, e\}$ and for the subset $Q = \{a, d, e\} \subseteq X$, $c_{\mu_{h\alpha}}(Q) = X$. Thus for the subset $P \cap Q = \{d\} \subseteq X$, $c_{\mu_{h\alpha}}(P \cap Q) = \{d, e\}$. Here we observed that $\{d, e\} \subseteq \{b, c, d, e\} \cap X = \{b, c, d, e\}$. i.e. $c_{\mu_{h\alpha}}(P \cap Q) \subseteq c_{\mu_{h\alpha}}(P) \cap c_{\mu_{h\alpha}}(Q)$.

Theorem 4.19: If $x \notin F$, where F is a μ -h α -closed subset of a GTS X, then there exists μ -h α -open set G such that $x \in G \subseteq CF$.

Proof: Let $x \notin F$, μ -h α -closed subset of a GTS X. As F is μ -h α -closed set thus by theorem 4.10, $F = c_{\mu_h\alpha}(F)$. By theorem 4.15, $c_{\mu_h\alpha}(F) = X - i_{\mu_h\alpha}(X - F)$.

Thus $x \notin X - i_{\mu_{h\alpha}}(X - F) \Rightarrow x \in i_{\mu_{h\alpha}}(X - F)$

i.e. there exists μ -h α -open set $i_{\mu_{h\alpha}}(X-F)$ such that $x \in i_{\mu_{h\alpha}}(X-F) \subseteq X-F = CF$.

References:

- [1] Csaszar, Generalized Open sets, Acta Math. Hungar., 75(1997), 65-87.
- [2] Csaszar, Generalized topology, generalized continuity.(2002). Acta Mathematica Hungarica, 96 (4). 351-357. <u>http://d.doi.org/10.1023/A:1019713018007</u>
- [3] Csaszar, δ and θ modification of generalized topologies, Acta Math. Hungar., 120 (3) (2008), 275-279.
- [4] Fadhil, "On h-open Sets and h-Continuous Function", J. Appl., Compt. Math., vol. 9, pp. 1-5, 2020.
- [5] B.K.Tyagi and R. Choudhary, On Generalized Closure Operator in Generalized Topological Spaces, International Journal of Computer Applications, Vol. 82 (15) (2013), 1-5.
- [6] B.K.Tyagi, Harsh V.S. Chauhan, On generalized closed sets in generalized topological spaces, CUBO A Mathematical Journal, Vol. 18, N0-01,(27-45), December 2016.
- [7] K. Tyagi and H.V. S. Chauhan, On some separation axioms in generalized topological spaces (2018), Symposium of general topology.
- [8] Beyda S. Abdullah, Sabih W. Askandar, Ruquayah N. Balo, $h\alpha$ -Open Sets in Topological Spaces, Journal of education and science (ISSN 1812-125X), Vol:31,No:03,2022(91-98).
- [9] Dhanabalan, AP and Santhi C, A Class of Separation Axioms in Generalized Topology, Mathematical Jounral of interdisciplinary sciences Vol.4 No.2 (2016) PP. 151-159
- [10] Dipankar Dey, Dhananjay Mandal and Manabendra Nath Mukherjee, Uniformity on generalized topological spaces, Arab Journal of Mathematical Sciences Emerald Publishing Limited(e-ISSN:2588-9214, p-ISSN: 1319-5166),DOI 10.1108/AJMS-03-2021-0058
- [11] Dunya M. Hammed, On Arps-Closed sets in Topological Spaces, Eng. & Tech. Journal, Vol.32, Part(B), No.2, 2014
- [12] J. L. Kelley, General Topology, Van Nostrand, Princeton, New Jersey, 1955.
- [13] M. Jeyaraman, S.C. Vasthirani, O. Ravi and R. Muthuraj, On α^* -sets in Generalized Topological Spaces, International Journal of Current Research in Science and Technology(ISSN: 2394-5745), Vol. 1, Issue 5 (2015), 39-43.
- [14] O. Njastad, On Some Classes of Nearly Open Sets, Pacific J. Math., vol. 15, no. 3, pp. 961-970, 1965.
 DOI: <u>http://dx.doi.org/10.2140/pjm.1965.15.961</u>
- [15] W. J. Pervin, Foundation of General Topology, Publisher: Academic Press.