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Abstract. The strong vacuum ultraviolet (VUV) radiation absorption and energy transfer 
mechanism are detected in SrF2: Gd3+, Eu3+ fluoride phosphor. The phosphor is synthesized by a 
wet chemical method followed by a reactive atmospheric process (RAP). The Powder XRD analysis 
shows structural purity. The photoluminescence characteristics of SrF2:Gd3+, Eu3+ phosphor is 
studied using the remote access of 4B8 window (VUV beamline) of the Beijing Synchrotron 
Radiation Facility (BSRF) China. In this paper, the energy transfer mechanism from the Gd3+ to 
Eu3+ through the cross-relaxation process is investigated. The down-conversion of energy from 
VUV (142 nm) to visible with a quantum efficiency (QE) of around 124% has been detected. The 
PL excitation and emission characteristics of the prepared phosphor advocate it as a prominent 
material for applications in mercury-free fluorescent lighting (MFFL) & Plasma Display panels. 

Introduction 
In recent times, for the development of MFFL and plasma display panel (PDP) technology, 

new quantum cutting (two-photon luminescent) phosphors are becoming essential for the realization 
of highly resourceful luminescent materials under VUV excitation. The emission of two or more 
low energy photons for each high energy absorbed photon is termed quantum cutting mechanism. It 
is also known as a down-conversion (DC) mechanism with quantum efficiency greater than 100% 
and it deals with the vision of providing improved energy efficiency in lighting devices [1]. The 
VUV levels of many of the lanthanide ions have been recently measured, thereby providing the 
starting point from which new phosphors may be designed [2]. Shi. et al. reported that the visible 
quantum cutting via downconversion has been observed in BaF2: Gd, Eu phosphor. The inorganic 
barium fluoride (BaF2) host matrix has a wide energy band gap, having an energy gap of about 10.9 
eV [3]. So that BaF2:RE3+ (Ce, Pr, Tb, Eu, Dy) have been premeditated in some earlier reports [4-
6]. On the same ground, in the present experiment Gadolinium (Gd) and Europium (Eu) are used as 
dopants in the SrF2 host and excitation at the VUV range is anticipated.  

The process of quantum cutting through downconversion in SrF2 can occur by the 
combination of Gd3+ and Eu3+, in which Gd3+ acts as a sensitizer and Eu+ acts as an activator. The 
current report presents the results of down-conversion luminescence for SrF2: Gd3+, Eu3+ 
synthesised by the soft chemical route and the subsequent heating in the reactive atmosphere. The 
resulting fine powder was tested for the purity of phase by the XRD technique. The VUV excitation 
and emission properties are investigated through remote access of the 4B8 VUV spectroscopy 
beamline of BSRF, Institute of High Energy Physics in Beijing, China. 
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Materials and Methods 
The overall synthesis process is illustrated in the following flow chart (fig.1). Strontium 

fluoride co-doped with Gd3+, Eu3+ phosphor synthesis by the wet chemical path and subsequently 
heated into a reactive atmosphere. In the synthesis process, analytical grade strontium carbonate 
(SrCO3) is used as a precursor. The hydrofluoric acid (HF) was added slowly to a homogeneous 
mixture of strontium carbonate and double-distilled (DD) water in a Teflon beaker. The slurry so 
formed was dried by warming it on a hot plate at 80°C. The aqueous solution of nitrate salts of 
gadolinium and europium obtained by boiling gadolinium and europium oxides (AR grade) 
separately in nitric acid was added in specified amounts to a mixture in a Teflon beaker. The 
mixture is then dried to get a fine powder. 

 
Fig.1 Flow chart of synthesis of SrF2: Gd3+, Eu3+ phosphor. 

The powder was then heated in a sealed glass tube under the reactive atmosphere created by 
a suitable amount of ammonium fluoride. It was further heated in a graphite crucible for 1 hour at a 
suitable temperature [7].  

Results and Discussion 
XRD Analysis: 

The synthesised fine powder of doped and undoped SrF2are tested for the purity of phase by 
x-ray diffraction (XRD) technique as shown in Fig.2. 
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Fig.2 XRD patterns of doped and undoped SrF2  

The XRD pattern for doped and undoped SrF2 is found to be the same and agrees well with 
the standard data from the ICDD file (01-086-2418). Also the XRD pattern shows that SrF2 lattice 
possesses cubic structure with a space group Fm-3m (225) with unit cell parameter a = b = c = 
5.7912 Aᵒ and α = β = γ = 90ᵒ. The diffraction peaks in all the cases are indexed to a pure cubic 
structure of SrF2 without the existence of any auxiliary phases. The average crystallite size 
calculated from the Scherrer formula is 23 nm and the strain calculated corresponding to the shift in 
(111) peak of XRD is 0.0007 [8]. 
VUV Photoluminescence Studies & Quantum Cutting: 

It can be observed from Fig.3 that at 1 mol% of Gd3+ ions in the SrF2 host matrix shows an 
optimum intensity peak at 311 nm at the excitation of 273 nm. Thus Gd3+ shows concentration 
quenching as a sensitizer in the SrF2 host matrix for higher concentrations. Fig. 4 shows excitation 
lines peaking at about 142, 156, 204 and 274 nm responsible for 8S7/26GJ, 6DJ, 6IJ transitions 
respectively. Fig. 5 shows emission bands underneath excitation of the wavelength 273, 156 and 
142 nm. The prominent emission lines of Eu3+ peaked at 593, 613, 650 and 700 nm correspond to 
5D07FJ (J=0,1, 2, 3) transitions respectively. The 5D07FJ transition peaks of Eu3+ are 
comparatively much more intense than that 5D17FJ (J=0,1, 2, 3) of transitions as shown in Fig 5. 

 
Fig.3 Emission spectra of SrF2: x% Gd3+ under the excitation of 273 nm. 
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It can be seen that the natures of emission spectrums are identical. The emission intensities 
corresponding to all transitions of Eu3+ at 142 nm excitation are maximum. 

 
Fig.4 Excitation spectrum of SrF2: Gd3+, Eu3+ observed at 593 and 611 nm. 

 
The emission spectrums of the phosphor SrF2: Gd3+, Eu3+, corresponding to the transitions 

of Eu3+ at three different excitation wavelengths (142, 156 & 273 nm) are depicted in Fig. 5. 

 
Fig.5 Emission spectra of SrF2: Gd3+, Eu3+ 

The ratios of peak emission intensity values corresponding to 5D07F2 (614 nm) and  
5D07F1 (592 nm) transitions are 0.50 and 0.85 respectively for 142 nm and 273 nm excitation 
wavelengths. This implies that magnetic dipole transitions 5D07F1 become prominent compared to 
electric dipole transitions 5D07F2 at VUV excitations (142 & 156 nm). The magnetic dipole 
transitions can occur only when Eu3+ locates at a site in the host with inversion symmetry [9]. 
Consequently, it may say that at VUV wavelengths the probability of transfer of excitation energy 
to the Eu3+ located at a site with inversion symmetry is more. The combination of Gd3+ and Eu3+ 
ions in the SrF2 host matrix plays a very important role to form cross-relaxation energy transfer 
(CRET) and increasing the luminescence quantum efficiency beyond 100%.  
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The asymmetric ratio (luminescence intensity ratio R), which in the case of Eu3+ ions can be 
calculated from the expression R= I (5D07F2)/I (5D07F1) [10].  From the intregralintencities of 
the emission spectra, theassymetric ratio is 0.5264at 142 nm excitation wavelength. The process of 
absorption of VUV photon through 8S7/26GJ transition of Gd3+ ions, transfer of energy to two Eu3+ 
ions leading 7FJ5DJtransitions and emission of two visible red colour photons through 
5D07FJ(J=0, 1, 2, 3)transition of Eu3+ ions as described in the energy level diagram [11]. 

As exemplified in Fig.6, CRET (step-1) can bring the Eu3+ ion only into 5D0 excited state 
therefore emissions due to 5D07FJ (J=0, 1, 2, 3)transitions is only probable. As excited Eu3+ is 
responsible for the first visible photon, the first step is called flourishing energy migration. However 
in the direct energy transfer (step-2), all the excited states 5DJ (J=0, 1, 2, 3) of Eu3+ are probable, so 
the emission lines corresponding to all 5D0 →7FJ (J=0, 1, 2, 3) transitions are probable [11-14]. 

The PL emission spectra of SrF2 doped with Gd3+ and Eu3+ (1 mol% each) in the entire 
visible range of wavelengths was monitored at 142, 156 and 273 nm excitations, to authenticate the 
energy transfer process and quantum cutting. The 142 nm excitations take Gd3+ to 6GJ states while 
273 nm excitations take to 6IJ states. The two-step relaxation of Gd3+ and hence quantum cutting is 
impossible due to excitation at 6IJ states. So the emissions corresponding to 5D07FJ(J=0, 1, 2, 3) 
transitions (step 2 in Fig. 6) of Eu3+ has a typical branching ratio between 5D0 and other 5DJ states. 
On the other hand, 142 nm excitation of Gd3+ to 6GJ states ensures the quantum cutting via two-step 
energy transfer. It results in an increase in 5D0 emissions over the typical branching ratio between 
5D0 and other 5DJ states. This fact is used to calculate the luminescence quantum efficiency of the 
phosphor. 

 
Fig.6 Energy level diagrams of Eu3+ and Gd3+ showing the cross-relaxation energy transfer process. 

The colour quality of the as-synthesized phosphors will be primarily assessed by the CIE 
chromaticity coordinate (x, y). According to the emission spectrum of SrF2: Gd3+, Eu3+, the 
chromaticity coordinates of this sample are found to be (0.46212 and 0.37291). The spectra SrF2: 
Gd3+, Eu3+ fitted to CIE 1931 chromaticity diagram is shown in Fig 7 [15]. 
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Fig. 7 The CIE chromaticity coordinates of red phosphor SrF2: Gd3+, Eu3+ 

In this experiment, the quantum efficiency is calculated only for 142 nm excitation. To 
determine the efficiency of the cross-relaxation, the formula proposed by Wegh [16-19] is adopted 
as follows 

1 2 1

1 2 1 1
P R R

P P R
−

=
+ +  

Where, P1 and P2 are the probabilities of the energy transfer from Gd3+ to Eu3+ through 
cross-relaxation and the direct transfer respectively, R1 = (5D0/5D1, 2, 3)6IJ and R2 = (5D0/5D1, 2, 3)6GJ  
are the ratios of the 5D0 and 5D1, 2, 3 emission integral intensities. The subscript (6GJ or 6IJ) represents 
the excitation level for which the ratio is detected. From the emission spectra, the values of R1 and 
R2 are found to be 0.2179 and 0.52064, respectively. Therefore, the value of (P1 / (P1 +P2)) obtained 
is 0.24. This means that there are 24% (24/100) Gd3+ ions in the 6GJ excited state that settle down 
through a two-step energy transfer by emitting two visible photons through Eu3+ transitions. So the 
overall quantum efficiency of the phosphor comes out to be 124%.  

It should be noted that the incident VUV photon absorption efficiency has taken into 
consideration also some non-radiative losses at defects and impurities are disregarded, quantum 
cutting in the Gd to Eu understanding requires energy transfer over the Gd sublattice to Eu [13]. 

Conclusions 
The inorganic material SrF2: Gd3+, Eu3+ is successfully prepared by wet chemical method 

and subsequent heating in the reactive atmosphere. The XRD pattern confirms the cubic structure of 
SrF2. The visible quantum cutting and energy transfer through down-conversion are observed in 
SrF2:1% Gd3+, 1% Eu3+. The quantum efficiency is found to be around 124% under the VUV 
excitation of 142 nm. The PL characteristics and quantum efficiency of the synthesized phosphor at 
VUV wavelengths advocate its potential for applications in mercury-free fluorescent lighting. 
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