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Abstract: In this paper we obtain the characterization of uniformly continuous pseudo metric spaces in terms of 

the associated equinormal proximity spaces. The precise result is the following.  

If (𝑋, 𝑑) is a pseudo metric space and 𝛿 = 𝛿(𝑑) is the associated proximity on 𝑋, then (𝑋, 𝑑) is uniformly 

continuous if and only if (𝑋, 𝛿) is equinormal proximity space. 

We also characterize equinormality of proximity space associated with normal uniform space in terms of 

proximity of continuous mapping. Precisely the following is proved.  

If  (𝑋, 𝒰) is a normal uniform space and 𝛿 is the associated proximity on 𝑋 then (𝑋, 𝛿) is equinormal proximity 

space iff every continuous real valued function on 𝑋 is a proximity mapping. Here the proximity 𝛿1 on ℝ is 

defined as 𝐴𝛿1𝐵 ⇔ 𝑑(𝐴, 𝐵) = inf{|𝑥 − 𝑦|  ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} = 0. 

Also we obtain the sufficient conditions for a uniform space to define equinormal proximity. The precise 

results are as follows. 

Let (𝑋, 𝒰) be a uniform space and 𝛿 be the associated proximity on 𝑋. If for any two non empty disjoint closed 

sets at least one is compact, then (𝑋, 𝛿) is equinormal. 

For a normal uniform space (𝑋, 𝒰) and the associated proximity 𝛿, if (𝑋, 𝒰) is uniformly continuous space then 

(𝑋, 𝛿) is equinormal. 
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1. Characterization of uniformly continuous pseudo metric spaces in terms in terms of proximity : 

Definition 1.1: 

Equinormal proximity space: A proximity space (𝑋, 𝛿) is equinormal iff  𝐴𝛿𝐵 ⇔ �̅� ∩ �̅� ≠ ∅.   

Theorem 1.2:  

Suppose (𝑋, 𝑑) is a pseudo metric space. Then (𝑋, 𝑑) is uniformly continuous space if and only if �̅� ∩ �̅� = ∅ ⇔

𝑑(𝐴, 𝐵) > 0. 
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This is the theorem4, p. 1801[5]. 

Proposition 1.3: 

Let (𝑋, 𝑑) be a pseudo metric space. Let 𝛿1 be a binary relation defined on the power set of 𝑋 by 𝐴𝛿1𝐵 ⇔ �̅� ∩

�̅� ≠ ∅ and 𝛿2 be a binary relation defined on the power set of 𝑋 by 

 𝐴𝛿2𝐵 ⇔ 𝑑(𝐴, 𝐵) = 0. Then  

1] 𝛿1 is a proximity on 𝑋. 

2] 𝛿2 is a proximity on 𝑋. 

3] For any 𝐴, 𝐵 ⊂ 𝑋,  if 𝐴 𝛿1 𝐵  then  𝐴 𝛿2 𝐵 but not conversely. 

4] 𝒯 = 𝒯(𝛿1) = 𝒯(𝛿2) 

 Where, 𝒯- the topology induced by the pseudo metric 𝑑 

             𝒯(𝛿1)- the topology induced by the proximity 𝛿1 

              𝒯(𝛿2)-the topology induced by the proximity𝛿2 

This is the theorem2.11 and remark 2.18 [4]. 

Proposition 1.4:  

 If (𝑋, 𝑑) is a pseudo metric space and 𝛿1, 𝛿2 are proximities defined on 𝑋 as  

 𝐴𝛿1𝐵 ⇔ �̅� ∩ �̅� ≠ ∅  and 𝐴𝛿2𝐵 ⇔ 𝑑(𝐴, 𝐵) = 0.  

Then (𝑋, 𝑑) is uniformly continuous space if and only if 𝛿1 = 𝛿2 . 

Proof:  By theorem 1.2, 

(𝑋, 𝑑) is uniformly continuous space ⇔ �̅� ∩ �̅� = ∅ ⇒ 𝑑(𝐴, 𝐵) > 0 

     ⇔ 𝑑(𝐴, 𝐵) = 0 ⇒ �̅� ∩ �̅� ≠ ∅ (Contrapositively) 

                                                            ⇔ 𝐴𝛿2𝐵 ⇒  𝐴𝛿1𝐵                                        ……….(1) 

By proposition 1.3,  𝛿1 > 𝛿2 i.e. 𝐴𝛿1𝐵 ⇒  𝐴𝛿2𝐵                                                    ……….(2) 

Thus from (1) and (2) we get,  

(𝑋, 𝑑) is uniformly continuous space ⇔ 𝐴𝛿1𝐵 ⇔  𝐴𝛿2𝐵 ⇔ 𝛿1 =  𝛿2 . 
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Theorem 1.5: 

If (𝑋, 𝑑) is a pseudo metric space and 𝛿2 is the associated proximity on 𝑋. Then (𝑋, 𝑑) is uniformly continuous if 

and only if (𝑋, 𝛿2) is equinormal. 

Proof: By above proposition 1.4, 

(𝑋, 𝑑) is uniformly continuous ⇔ 𝐴𝛿2𝐵 ⇔ 𝐴𝛿1𝐵 

                                                  ⇔ 𝐴𝛿2𝐵 ⇔ �̅� ∩ �̅� ≠ ∅ (by definition of the proximity 𝛿1) 

                                                  ⇔ (𝑋, 𝛿2) is equinormal (by definition of equinormal space). 

2. Characterization of  Equinormal proximity spaces: 

Definition 2.1: 

Proximity Mapping: Let  (𝑋, 𝛿1) and (𝑌, 𝛿2) be two proximity spaces. A function 𝑓: 𝑋 → 𝑌 

is said to be a proximity mapping if and only if  𝐴 𝛿1𝐵   ⇒ 𝑓(𝐴)𝛿2 𝑓(𝐵).    

Lemma 2.2:  

For subsets 𝐴 and 𝐵 of a proximity space(𝑋, 𝛿),  𝐴𝛿𝐵 ⇔ �̅�𝛿�̅�, where the closure is taken with respect to 𝒯(𝛿). 

This is the lemma 2.8,p.12[4]. 

 

Theorem 2.3 : 

Every uniform space (𝑋, 𝒰) has an associated proximity 𝛿 = 𝛿(𝒰) defined by 

 𝐴𝛿𝐵 ⟺ (𝐴 × 𝐵) ∩ 𝑈 ≠ ∅,  for every 𝑈 ∈ 𝒰. 

This is the theorem 10.2, p. 64[4]. 

Theorem 2.4:  

Let (𝑋, 𝒰) be a normal uniform space and 𝛿 = 𝛿(𝒰). If (𝑋, 𝛿) is equinormal proximity space then every 

continuous real valued function on 𝑋 is a proximity mapping, where the proximity 𝛿1 on ℝ is any proximity 

compatible with usual topology on ℝ. 
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Proof: Let 𝑓: (𝑋, 𝒰) → (ℝ, 𝒱) be a continuous real valued function. We show that 𝑓 is a proximity mapping. 

let 𝐴, 𝐵 ⊂ 𝑋  such that 𝐴𝛿𝐵. 

⇒  �̅� ∩ �̅� ≠ ∅  (since (𝑋, 𝛿) is equinormal) 

⇒  𝑓(�̅�) ∩ 𝑓(�̅�) ≠ ∅ 

⇒  𝑓(𝐴̅̅ ̅̅ ̅) ∩ 𝑓(𝐵̅̅ ̅̅ ̅) ≠ ∅     (since 𝑓 is continuous 𝑓(�̅�)⊂ 𝑓(𝐴)̅̅ ̅̅ ̅̅   and 𝑓(�̅�)⊂ 𝑓(𝐵)̅̅ ̅̅ ̅̅ ) 

⇒ 𝑓(𝐴)̅̅ ̅̅ ̅̅ 𝛿1𝑓(𝐵)̅̅ ̅̅ ̅̅     (by proximity axiom) 

⇒ 𝑓(𝐴)𝛿1 𝑓(𝐵)   (by Lemma 2.2) i.e. 𝐴𝛿𝐵 ⇒ 𝑓(𝐴)𝛿1𝑓(𝐵).` 

Theorem 2.5:  

Let (𝑋, 𝒰) be a normal uniform space and 𝛿 = 𝛿(𝒰). If every continuous real valued function on 𝑋 is a proximity 

mapping then (𝑋, 𝛿) is equinormal.  

Here the proximity 𝛿1 on ℝ is defined as 𝐴𝛿1𝐵 ⇔ inf{|𝑥 − 𝑦|  ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} = 0,   𝐴, 𝐵 ⊂ ℝ. 

Proof: To show that (𝑋, 𝛿) is equinormal, we show that �̅� ∩ �̅� = ∅ ⇒ 𝐴 𝐵. 

Let 𝐴, 𝐵 ⊂ 𝑋 such that �̅� ∩ �̅� = ∅. Since 𝑋 is normal, there exists a continuous function 𝑓: 𝑋 → ℝ such that 

𝑓(�̅�) = 0 and 𝑓(�̅�) = 1.                                                                                                  

Suppose 𝐴𝛿𝐵. Then by Lemma 2.2, �̅�𝛿�̅�. As 𝑓 is continuous, by hypothesis 𝑓 is a proximity 

 mapping. Thus �̅�𝛿�̅� ⇒  𝑓(�̅�)𝛿1𝑓(�̅�) 

⇒ (𝑓(�̅�) × 𝑓(�̅�)) ∩ 𝑉𝑑,𝑟 ≠ ∅,     ∀𝑟 > 0. Here 𝑉𝑑,𝑟 = {(𝑥, 𝑦)  ∶ |𝑥 − 𝑦| < 𝑟} 

Thus for each 𝑛 ∈ ℕ, (𝑓(�̅�) × 𝑓(�̅�)) ∩ 𝑉
𝑑,

1

𝑛

≠ ∅. 

∴ for 𝑛 = 2, there exists 𝑥 ∈ �̅�  and 𝑦 ∈ �̅� such that |𝑓(𝑥) − 𝑓(𝑦)| <
1

2
 . 

But 𝑥 ∈ �̅�  and 𝑦 ∈ �̅� ⇒ 𝑓(𝑥) = 0 and 𝑓(𝑦) = 1 then |𝑓(𝑥) − 𝑓(𝑦)| = |0 − 1| = 1 ≮
1

2
.  

This contradiction proves that 𝐴 𝐵. 

Combining theorem 2.4 & theorem 2.5 we get the following result. 
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Theorem 2.6:  

Let (𝑋, 𝒰) be a normal uniform space and 𝛿 = 𝛿(𝒰). Then (𝑋, 𝛿) is equinormal proximity space iff every 

continuous real valued function on 𝑋 is a proximity mapping. Here the proximity 𝛿1 on ℝ is defined as 𝐴𝛿1𝐵 ⇔

𝑑(𝐴, 𝐵) = inf{|𝑥 − 𝑦|  ∶ 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} = 0. 

3.  Sufficient conditions for a Uniform space to define Equinormal Proximity Space:  

Theorem 3.1:  

 Let (𝑋, 𝒰) be a uniform space. Let 𝛿 = 𝛿(𝒰). If for any two non empty disjoint closed subsets  𝐴, 𝐵 of 𝑋 at least 

one is compact then 𝐴𝛿𝐵 ⇒ �̅� ∩ �̅� ≠ ∅. ie. (𝑋, 𝛿) is equinormal. 

Proof: We show that 𝐴𝛿𝐵 ⇒ �̅� ∩ �̅� ≠ ∅. 

Suppose �̅� ∩ �̅� = ∅ but 𝐴𝛿𝐵. By assumption we may assume that �̅� is compact. 

Since 𝐴𝛿𝐵,(𝐴 × 𝐵) ∩ 𝑈 ≠ ∅, ∀𝑈 ∈ 𝒰. Thus for each 𝑈 ∈ 𝒰 we may choose a point (𝑥𝑈, 𝑦𝑈) ∈ 𝑈  such that 

(𝑥𝑈, 𝑦𝑈) ∈ (𝐴 × 𝐵) ∩ 𝑈. 

Thus we get the net {𝑥𝑈 ∶  𝑈 ∈ 𝒰, ≥} and {𝑦𝑈 ∶  𝑈 ∈ 𝒰, ≥} in 𝐴 and 𝐵 respectively  

such that (𝑥𝑈, 𝑦𝑈) ∈ 𝑈. The net {𝑥𝑈 ∶ 𝑈 ∈ 𝒰, ≥} is in 𝐴 and �̅� is compact.  

Thus there is a subnet {𝑧𝑃 ∶ 𝑃 ∈ 𝐸, ≥} of  {𝑥𝑈 ∶ 𝑈 ∈ 𝒰, ≥}  which converges to 𝑧 in �̅�. 

i.e. for each 𝑈 ∈ 𝒰 there is 𝑃1 ∈ 𝐸 such that if 𝑄 ∈ 𝐸 and 𝑄 ≥ 𝑃1 then (𝑧𝑄 , 𝑧) ∈ 𝑈.   ……(3) 

As {𝑧𝑃 ∶ 𝑃 ∈ 𝐸, ≥} is a subnet of the net {𝑥𝑈 ∶ 𝑈 ∈ 𝒰, ≥},  there is a function 𝑁: 𝐸 → 𝒰 such 

 that 𝑥 ∘ 𝑁 = 𝑧 i.e. 𝑥𝑁𝑃
= 𝑧𝑃  for all 𝑃 ∈ 𝐸. 

Also for each 𝑈 ∈ 𝒰 there is 𝑃2 ∈ 𝐸 with the property that if 𝑄 ≥ 𝑃2 then 𝑁𝑄 ≥ 𝑈.   ..…..(4) 

Now we show that {(𝑦 ∘ 𝑁)(𝑄) ∶ 𝑄 ∈ 𝐸, ≥} converges to 𝑧. 

Let 𝑈 ∈ 𝒰. 

Then ∃ 𝑉 ∈ 𝒰 such that 𝑉 ∘ 𝑉 ⊂ 𝑈.  

Then from (3) for 𝑉 ∈ 𝒰, ∃ 𝑃1 ∈ 𝐸 such that  if 𝑄 ∈ 𝐸 and 𝑄 ≥ 𝑃1 then (𝑧𝑄 , 𝑧) ∈ 𝑉.     

Also from (4) for 𝑉 ∈ 𝒰, ∃ 𝑃2 ∈ 𝐸 such that  if 𝑄 ∈ 𝐸 and 𝑄 ≥ 𝑃2 then 𝑁𝑄 ≥ 𝑉.      

Now for 𝑃1, 𝑃2 ∈ 𝐸, ∃ 𝑃 ∈ 𝐸  such that 𝑃 ≥ 𝑃1  and 𝑃 ≥ 𝑃2   (by definition of directed set). 

 Then for 𝑄 ≥ 𝑃 we have 𝑁𝑄 ≥ 𝑉 and (𝑧𝑄 , 𝑧) ∈ 𝑉.                                                 ……….…(5) 
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𝑄 ≥ 𝑃 ⇒ 𝑁𝑄 ≥ 𝑉 ⇒ 𝑁𝑄[𝑝] ⊂ 𝑉[𝑝] for all 𝑝 ∈ 𝑋                                                    ………….(6)                                                   

Now  𝑧𝑄 = 𝑥 ∘ 𝑁𝑄 = 𝑥𝑁𝑄
∈ 𝐴                                                                                   

Thus for 𝑥𝑁𝑄
∈ 𝐴  there is 𝑦𝑁𝑄

∈ 𝐵 such that (𝑥𝑁𝑄
, 𝑦𝑁𝑄

) ∈ 𝑁𝑄  

⇒ 𝑦𝑁𝑄
∈ 𝑁𝑄[𝑥𝑁𝑄

]  ⊂ 𝑉[𝑥𝑁𝑄
]   from (6) 

⇒ 𝑦𝑁𝑄
∈ 𝑉[𝑥𝑁𝑄

] ⇒ (𝑥𝑁𝑄
, 𝑦𝑁𝑄

) ∈ 𝑉  

i.e. (𝑧𝑄, 𝑦𝑁𝑄
) ∈ 𝑉  and 𝑉 is symmetric thus  (𝑦𝑁𝑄

, 𝑧𝑄) ∈ 𝑉                                        ...….…..(7) 

Thus from (5) and (7) we get (𝑦𝑁𝑄
, 𝑧) = (𝑦𝑁𝑄

, 𝑧𝑄, ) ∘ (𝑧𝑄 , 𝑧) ∈ 𝑉 ∘ 𝑉 ⊂ 𝑈 ⇒ (𝑦𝑁𝑄
, 𝑧) ∈ 𝑈  

i.e. for each 𝑈 ∈ 𝒰 there is 𝑃 ∈ 𝐸 such that  if 𝑄 ∈ 𝐸 and 𝑄 ≥ 𝑃 then (𝑦𝑁𝑄
, 𝑧) ∈ 𝑈. 

Thus the net {𝑦𝑁𝑄
∶ 𝑄 ∈ 𝐸, ≥} in 𝐵 converges to 𝑧.  

Hence 𝑧 ∈ �̅�. i.e. 𝑧 ∈ �̅� ∩ �̅� ⇒  �̅� ∩ �̅� ≠ ∅. 

This gives contradiction to the given condition. Hence our assumption that 𝐴𝛿𝐵 is wrong. 

 Thus 𝐴 𝐵.  

Theorem 3.2:  

Suppose (𝑋, 𝒰) is a normal uniform space and 𝛿 = 𝛿(𝒰) is an associated proximity on 𝑋. If (𝑋, 𝒰) is uniformly 

continuous space then (𝑋, 𝛿) is equinormal. 

Proof: Let 𝐴, 𝐵 ⊂ 𝑋 such that �̅� ∩ �̅� = ∅. Then we show that 𝐴 𝐵. 

Suppose 𝐴𝛿𝐵 and 𝛿 = 𝛿(𝒰). Then (𝐴 × 𝐵) ∩ 𝑈 ≠ ∅,   ∀ 𝑈 ∈ 𝒰. 

So we may choose a point (𝑥𝑈, 𝑦𝑈) ∈ (𝐴 × 𝐵) ∩ 𝑈,      ∀ 𝑈 ∈ 𝒰. 

Thus we get a net {𝑥𝑈 ∶  𝑈 ∈ 𝒰, ≥} in 𝐴 and {𝑦𝑈 ∶  𝑈 ∈ 𝒰, ≥} in 𝐵 such that 

(𝑥𝑈, 𝑦𝑈) ∈  (𝐴 × 𝐵) ∩ 𝑈,    ∀ 𝑈 ∈ 𝒰                                                                                 ……..(8) 

Also �̅� ∩ �̅� = ∅  and 𝑋 is normal, there exist a continuous function 𝑓: 𝑋 → ℝ such that 

𝑓(�̅�) = 0  and 𝑓(�̅�) = 1. 

As 𝑋 is uniformly continuous, the continuous function 𝑓 is uniformly continuous. 

i.e. for every 𝑟 > 0, there exists 𝑈 ∈ 𝒰 such that 

 whenever (𝑥, 𝑦) ∈ 𝑈 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < 𝑟                                                                      …....(9) 
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Thus for 𝑟 =
1

2
> 0, there exists 𝑈0 ∈ 𝒰 such that (𝑥, 𝑦) ∈ 𝑈0 ⇒ |𝑓(𝑥) − 𝑓(𝑦)| <

1

2
 . 

But for  𝑈0 ∈ 𝒰 there exists 𝑥𝑈0
∈ 𝐴 and 𝑦𝑈0

∈ 𝐵 such that (𝑥𝑈0
, 𝑦𝑈0

) ∈  (𝐴 × 𝐵) ∩ 𝑈0 from(8) 

Hence from (9), |𝑓(𝑥𝑈0
) − 𝑓(𝑦𝑈0

)| <
1

2
. 

But 𝑓(𝑥𝑈0
) = 0 and 𝑓(𝑦𝑈0

) = 1, then |𝑓(𝑥𝑈0
) − 𝑓(𝑦𝑈0

)| = |0 − 1| ≮
1

2
.  

This gives contradiction. Hence our assumption that 𝐴𝛿𝐵 is wrong. Thus 𝐴 𝐵. 
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