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In this paper, Kaluza-Klein space-time with quark and strange quark 

matter in 𝑓(𝑅, 𝑇) gravity has been studied. The general solutions of the 

field equations of Kaluza-Klein space-time have been obtained under 

the assumption of constant deceleration parameter. The physical and 

geometrical aspects of the model are also discussed in details. 
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Introduction:- 
A fundamental theoretical challenge to gravitational theories has been imposed by the observational data (Reiss et 

al.[1], Perlmutter et al.[2], Bernardis et al.[3], Hanany et al. [4], Padmanabhan [5], Peeble and Ratra[6]) on the late 

time acceleration of the universe and the existence of the dark matter. Carroll et al.[7] explained the presence of a 

late time cosmic acceleration of the universe in 𝑓(𝑅) gravity. Bertolami et al.[8] have proposed a generalization of  

𝑓(𝑅) modified theories of gravity, by including in the theory an explicit coupling of an arbitrary function of the 

Ricci scalar 𝑅 with the matter Lagrangian density 𝐿𝑚. Several 𝑓(𝑅) gravity models are reviewed by Capozziello et 

al.[9]. The Palatini formulation of the non-minimal geometry-coupling models was considered by Harko et al.[10].  

Harko and Lobo [11] proposed a maximal extension of the Hilbert-Einstein action assuming the gravitational 

Lagrangian as an arbitrary function of the Ricci scalar 𝑅 and of the matter Lagrangian 𝐿𝑚.  

 

Harko et al.[12] developed 𝑓(𝑅, 𝑇) modified theory of gravity, where the gravitational Lagrangian is given by an 

arbitrary function of the Ricci scalar  𝑅 and of the trace of the stress-energy tensor 𝑇. They have obtained the 

gravitational field equations in the metric formalism as well as the equations of motion for test particles, which 

follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field equations depend 

on the nature of the matter source. They have presented the field equations of several particular models, 

corresponding to some explicit forms of the function 𝑓(𝑅, 𝑇). Reddy et al.[13,14] have extended this work for 

Kaluza-Klein and Bianchi type-III Universe and Adhav [15] for LRS Bianchi type-I Universe in presence of the 

perfect fluid in 𝑓(𝑅, 𝑇) gravity.  

 

The theory of five dimensions is due to the idea of Kaluza [16] and Klein [17]. A five dimensional (5D) general 

relativity is the best outcome of an attempt made by these two by using one extra dimension to unify gravity and 

electro-magnetism. Realistic unification through the Kaluza-Klein approach requires  𝑑 = 5  manifold topology and 

the spatial extra dimension radius is of Planck length order. According to Wesson [18,19] and Bellini [20], the 

matter is induced in 4D by 5D vacuum theory for studying the cosmology of 5D with pure geometry in non-compact 
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Kaluza-Klein theory. Kaluza-Klein theory is essentially an extension of Einstein’s general theory of relativity in five 

dimensions which is of much interest in particle physics & cosmology. 

 

The number of studies have been done by considering quark matter and strange quark matter in general relativity 

and other modified theories of gravity (Katore[21], Khadekaret al.[22], Mahanta et al.[23], Santhikumar et al. [24], 

Caglar et al.[25]). Recently, Sahoo et al.[26 , 27] have con-structed an anisotropic models with magnetized strange 

quark matter in 𝑓(𝑅, 𝑇) gravity by considering some specific parametrization of deceleration parameter. Nagpal et 

al.[28] has been studied magnetized quark matter and strange quark matter distributions in 𝑓(𝑅, 𝑇) gravity. 

Recently, Prasad et al.[29] considered the bulk viscous fluid for the model in 𝑓(𝑅, 𝑇) gravity and also Dinesh 

Chandra Mauryaet al.[30] have studied Domain walls and quark matter in Bianchi type-V universe with 

observational constraints in 𝑓(𝑅, 𝑇) gravity. 

 

In the present paper, Kaluza-Klein cosmological model with quark matter and strange quark matter in 𝑓(𝑅, 𝑇) theory 

of gravity has been studied. The general solutions of the field equations of Kaluza-Klein space-time have been 

obtained under the assumption of constant deceleration parameter in the context of exponential volumetric 

expansion model. The physical and geometrical aspects of the model are also discussed in detailed. 

 

Gravitational field equations of 𝒇(𝑹, 𝑻) theory of gravity:- 
In 𝑓(𝑅, 𝑇) theory of gravity, the field equations are obtained from the Hilbert-Einstein type variation principle.     

The action for this modified theory of gravity is given by 

 

𝑆 =
1

16𝜋
∫ 𝑓(𝑅, 𝑇)√−𝑔 𝑑4𝑥 + ∫ 𝐿𝑚√−𝑔 𝑑4𝑥   ,                                                             (1) 

 

where 𝑓(𝑅, 𝑇) is an arbitrary function of the Ricci scalar 𝑅 and of the trace 𝑇 of the stress-energy tensor of the 

matter  𝑇𝜇𝑣  and 𝐿𝑚 is the matter Lagrangian. 

 

The corresponding field equations of the 𝑓(𝑅, 𝑇) gravity is found by varying the action (1) with respect to the        

metric 𝑔𝜇𝜈  :  

 

 𝑓𝑅(𝑅, 𝑇)𝑅𝜇𝜈 −
1

2
𝑓(𝑅, 𝑇)𝑔𝜇𝜈 + (𝑔𝜇𝜈□−𝛻𝜇𝛻𝜈)𝑓𝑅(𝑅, 𝑇) = 8𝜋𝑇𝜇𝜈 − 𝑓𝑇(𝑅, 𝑇)𝑇𝜇𝜈 − 𝑓𝑇(𝑅, 𝑇)𝛩𝜇𝜈  , 

                                                                                                                                                                                      (2) 

                    where  𝑓𝑅(𝑅, 𝑇) =
𝜕𝑓(𝑅,𝑇)

𝜕𝑅
 ,    𝑓𝑇(𝑅, 𝑇) =

𝜕𝑓(𝑅,𝑇)

𝜕𝑇
 ,   □= 𝛻𝜇𝛻𝜇,   𝛩𝜇𝜈 = 𝑔𝛼𝛽 𝛿𝑇𝛼𝛽

𝛿𝑔𝜇𝜈  ;                                  (3) 

𝛻𝜇 is the covariant derivative and 𝑇𝜇𝜈 is the standard matter energy-momentum tensor derived from the Lagrangian 

𝐿𝑚.  

 

The stress-energy tensor of matter is 

 

𝑇𝜇𝜈 = −
2

√−𝑔

𝛿 (√−𝑔𝐿𝑚)

𝛿𝑔𝜇𝜈  .                                                                                                              (4) 

 

The tensor Θ𝜇𝜈 in equation (2) is given by 

 

Θ𝜇𝜈 = −2 T𝜇𝜈 + g𝜇𝜈𝐿𝑚 − 2𝑔𝛼𝛽 𝜕2𝐿𝑚

𝜕𝑔𝜇𝜈𝜕𝑔𝛼𝛽  ,                                                                              (5) 

 

the matter Lagrangian L𝑚 may be chosen as L𝑚 = −𝑝, where p is the thermodynamical pressure of matter content of 

the Universe.  

 

Now, equation (5) gives the variation of the stress-energy tensor as 

 

Θ𝜇𝜈 = −2 T𝜇𝜈 − 𝑝g𝜇𝜈    ,                                                                                                            (6) 
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Generally, the field equations also depend on (through the tensor 𝛩𝜇𝜈) the physical nature of the matter field. Hence, 

several theoretical models corresponding to different matter sources in 𝑓(𝑅, 𝑇) gravity can be obtained. Harko et 

al.[12] obtained some particular classes of 𝑓(𝑅, 𝑇) modified gravity models by specifying functional form of  𝑓  as 

 

 

(𝑖) 𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇)

(𝑖𝑖)   𝑓(𝑅, 𝑇) = 𝑓1(𝑅) + 𝑓2(𝑇)

(𝑖𝑖𝑖) 𝑓(𝑅, 𝑇) = 𝑓1(𝑅) + 𝑓2(𝑅)𝑓3(𝑇)
}.                                                                                      (7) 

 

Harkoet al. [11] have investigated FRW cosmological models in this theory by choosing appropriate function 𝑓(𝑇). 

They have also discussed the case of scalar fields since scalar fields play a vital role in cosmology. The equations of 

motion of test particles and a Brans-Dickey type formulation of the model are also presented. 

 

Metric and Field Equations:- 
Consider a five-dimensional Kaluza-Klein metric in the form as 

 

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2(𝑡)(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) − 𝐵2(𝑡)𝑑𝜓2   ,                                                           (8) 

 

where 𝐴(𝑡) and 𝐵(𝑡) are the scale factors (metric tensors) and functions of cosmic time 𝑡 only and the fifth 

coordinate  𝜓  is taken to be space-like. 

 

In the present study, we assume that the energy momentum tensor for the quark matter (Aktas et. al.[31] , Yilmaz, 

et. al. [32]) in the form as 

 

𝑇(𝑄𝑢𝑎𝑟𝑘)
𝜇𝜈 = (𝜌 + 𝑝) 𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈   ,                                                                                       (9) 

 

where   𝜌 = 𝜌𝑞 + 𝐵𝑐  is the energy density,   𝑝 = 𝑝𝑞 − 𝐵𝑐  is pressure of the fluid and 𝑢𝜇 = (1,0,0,0,0) is the                

five-velocity vector in the comoving coordinates system which satisfies the condition  𝑢𝜇𝑢𝜇 = 1. Since quark matter 

behaves nearly perfect fluid (Adams et al.[33], Adcoxet al.[34], Back et al.[35], Aktas et al.[31], Yilmaz et al.[32]). 

We will use the following equation of state for quark matter in the form as 

 

  𝑝𝑞 = 𝜀𝜌𝑞  ,  0 ≤ 𝜀 ≤ 1.                                                                                                        (10) 

 

Also, the linear equation of state for strange quark matter (Sharma et al. [36, 37]) in the form as 

 

  𝑝 = 𝜀(𝜌 − 𝜌0)  ,                                                                                                                       (11) 
 

where  𝜌0  is the energy density at zero pressure and 𝜀 is a constant. 

 

When  𝜀 =
1

3
  and 𝜌0 = 4𝐵𝑐 , the above linear equation of state is reduced to the followingequation of state for 

strange quark matter in the bag model (Aktaset al. [31], Yilmaz et al. [32]) as 

 

𝑝 =
(𝜌−4𝐵𝑐)

3
   ,                                                                                                                            (12) 

where  𝐵𝑐  is the Bag constant. 

 

In the present paper, we consider Kaluza-Klein cosmological model for the particular choice of 𝑓(𝑅, 𝑇) given by 

 

𝑓(𝑅, 𝑇) = 𝑅 + 2𝑓(𝑇).                                                                                                              (13) 
 

where the  𝑓(𝑇)  is an arbitrary function of the trace of the stress-energy tensor of matter. 

 

Using equation (6) & (13) in equation (2) then the gravitational field equation in 𝑓(𝑅, 𝑇)gravity becomes 
 

𝑅𝜇𝜈 −
1

2
𝑅𝑔𝜇𝜈 = 8𝜋𝑇𝜇𝜈 + 2 𝑓 ′(𝑇)𝑇𝜇𝜈 + [2𝑝𝑓 ′(𝑇) +  𝑓(𝑇)]𝑔𝜇𝜈   ,                                          (14)

 
where prime  denotes differentiation with respect to the argument. 
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Now, In the present work, we choose the function  𝑓(𝑇)  of the trace of the stress-energy tensor of the matter as  

 

 𝑓(𝑇) = 𝜆𝑇 ,  where  𝜆  is a constant.                                                                                       (15) 

The corresponding field equations (14) for the metric (8) with the help of equations (9) and (15) can be written as 

 

3
𝐴̇2

𝐴2 + 3
𝐴̇𝐵̇

𝐴𝐵
= −(8𝜋 + 3𝜆)𝜌𝑞 + 2𝜆𝑝𝑞 − (8𝜋 + 5𝜆)𝐵𝑐    ,                                                       (16) 

 

2
𝐴̈

𝐴
+

𝐴̇2

𝐴2 + 2
𝐴̇𝐵̇

𝐴𝐵
+

𝐵̈

𝐵
= (8𝜋 + 4𝜆)𝑝𝑞 − 𝜆𝜌𝑞 − (8𝜋 + 5𝜆)𝐵𝑐    ,                                               (17) 

 

3
𝐴̈

𝐴
+ 3

𝐴̇2

𝐴2 = (8𝜋 + 4𝜆)𝑝𝑞 − 𝜆𝜌𝑞 − (8𝜋 + 5𝜆)𝐵𝑐    ,                                                            (18) 

 

where the overhead dot (.) denote derivative with respect to the cosmic time t. 

 

The spatial volume  (𝑉)  is defined as 

 

𝑉 = 𝑎4 = 𝐴3𝐵  ,                                                                                                                       (19) 

 

where 𝑎  is the average scale factor. 

 

The directional Hubble parameters in the directions of  𝑥, 𝑦, 𝑧  and  𝜓  axes respectively are defined as 

 

𝐻𝑥 = 𝐻𝑦 = 𝐻𝑧 =
𝐴̇

𝐴
    ,  𝐻𝜓 =

𝐵̇

𝐵
  .                                                                                          (20) 

 

The mean Hubble parameter (𝐻)  is given by 

𝐻 =
1

4
(3

𝐴̇

𝐴
+

𝐵̇

𝐵
) .                                                                                                                      (21) 

 

The volumetric deceleration parameter  (𝑞) is given by 

𝑞 = −
𝑎𝑎̈

𝑎̇2 .                                                                                                                                 (22) 

 

The anisotropic parameter (𝛥) of the expansionis defined as 

  

𝛥 =
1

4
∑ (

𝐻𝑖−𝐻

𝐻
)

2
4
𝑖=1  ,                                                                                                                 (23) 

 

where  𝐻𝑖(𝑖 = 1,2,3,4) represent the directional Hubble parameters in the direction of  𝑥,  𝑦,  𝑧  and  𝜓 respectively. 

 

The expansion scalar  (𝜃)  is defined as  

 

𝜃 = 4𝐻.                                                                                                                                    (24) 

 

The Shear scalar  (𝜎2)  is defined as 

𝜎2 =
4

2
𝛥 𝐻2  .                                                                                                                           (25) 

 

Solutions of the field equations:- 
Since there are three highly non-linear equations (16) to (18) with four unknowns  A, B, 𝜌𝑞 and  𝑝𝑞 . In order to solve 

the system completely, we impose a law of variation for the Hubble parameter which was initially proposed by 

Berman [38] for RW (Robertson-Walker) space-time and yields the constant value of deceleration parameter. 

Adhavet al. [39] used this law for LRS Bianchi type-I metric in creation field cosmology. According to this law, the 

variation of the mean Hubble parameter for the Kaluza-Klein metric given by 
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𝐻 = 𝑘(𝐴3𝐵)− 𝑚/4   ,                                                                                                                 (26) 

where  𝑘 > 0  and  𝑚 ≥ 0  are constants. 

 

Now, equating equation (21) with (26) and integrating we get 

𝑉 = 𝐴3𝐵 = 𝑐1𝑒4𝑘𝑡  ,                 for  𝑚 = 0  ,                                                                           (27) 

and  

𝑉 = 𝐴3𝐵 = (𝑚𝑘𝑡 + 𝑐2)4/𝑚    , for 𝑚 ≠ 0 ,                                                                             (28) 

 

where  𝑐1  and  𝑐2  are positive constants of integration. 

 

Using equation (26) with (27) for 𝑚 = 0 and with (28) for 𝑚 ≠ 0 , the mean Hubble parameters areobtained as 

 

𝐻 = 𝑘              ,                  for 𝑚 = 0 ,                                                         (29) 

and  

𝐻 = 𝑘(𝑚𝑘𝑡 + 𝑐2)−1 ,      for 𝑚 ≠ 0 .                                                                                   (30) 
 

Using equations (27) and (28) in (22), we get constant values for the deceleration parameter for mean scale factor as 

  

𝑞 = −1          ,                  for  𝑚 = 0 ,                                                                                     (31) 

and 

𝑞 = 𝑚 − 1     ,                   for 𝑚 ≠ 0.                                                                                      (32) 
 

The sign of q indicates whether the model accelerates or not. The positive sign if 𝑞(𝑚 > 1) corresponds to 

decelerating models where as the negative sign  −1 ≤ 𝑞 < 0  for  0 ≤ 𝑚 < 1  indicates acceleration and  𝑞 = 0  for 

𝑚 = 1 corresponds to expansion with constant velocity. 
 

In this paper, we consider the model for  𝒎 = 𝟎  ,   (𝒒 = −𝟏): 

(Exponential Volumetric Expansion Model ) 
 

Subtracting equation (17) from (18) and using mean Hubble parameter from equation (21), we get 

 
𝑑

𝑑𝑡
(

𝐴̇

𝐴
−

𝐵̇

𝐵
) + (

𝐴̇

𝐴
−

𝐵̇

𝐵
)  4𝐻 = 0 .                                                                                                (33) 

 

On integration of equation (33) and considering equation (29), we obtain  

 

(
𝐴̇

𝐴
−

𝐵̇

𝐵
) = 𝑐3𝑒−4𝑘𝑡  ,                                                                                                                 (34) 

 

where  𝑐3  is constant of integration.  

 

On integration of equation (34) and using equation (27), we get exact values of the scale factors 
 

𝐴(𝑡) = (
𝑐1

𝑐4
)

1

4
 𝑒

(𝑘𝑡−
1

16𝑘 𝑐3
  𝑒−4𝑘𝑡)

     ,                                                                                          (35) 

 

𝐵(𝑡) = (𝑐1𝑐4
3)

1

4 𝑒
(𝑘𝑡+

3  

16𝑘 𝑐3
𝑒−4𝑘𝑡)

     ,                                                                                        (36) 

 

where  𝑐1 , 𝑐3 and 𝑐4 are constants of integration. 

 

The spatial volume  (𝑉) is found to be 

 

𝑉 = 𝑐1𝑒4𝑘𝑡 .                                                                                                                              (37) 
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The directional Hubble parameters inthe directions of  𝑥, 𝑦, 𝑧 and 𝜓 axes respectively are 

 

𝐻𝑥 = 𝐻𝑦 = 𝐻𝑧 = (𝑘 +
1

4 𝑐3
𝑒−4𝑘𝑡)  ,                                                                                        (38) 

 

𝐻𝜓 = (𝑘 −
3

4 𝑐3
𝑒−4𝑘𝑡) .                                                                                                            (39) 

 

The mean Hubble parameter  (𝐻) is obtained as  

 

𝐻 = 𝑘 .                                                                                                                                      (40) 

 

The anisotropic parameter (𝛥) of the expansionis found to be 

 

𝛥 =
3

16 𝑘2𝑐3
2 𝑒−8𝑘𝑡    ,                                                                                                                 (41) 

 

The expansion scalar  (𝜃) is found to be 

 

𝜃 = 4𝑘 .                                                                                                                                    (42) 

 

The Shear scalar  (𝜎2)  is found to be 

 

𝜎2 =
3

8 𝑐3
2 𝑒−8𝑘𝑡  .                                                                                                                        (43) 

 

Using equations (35) and (36) in equation (16) with the help of linear equation of state (10) for 𝜀 =
1

3
 ,  we obtain the 

energy density and pressure of the quark matter as 

 

𝜌𝑞 =
9 (3𝑐3−1)

16 𝑐3
2 (24𝜋+7𝜆)

𝑒−8𝑘𝑡 − [
18𝑘2+3(8 𝜋+5𝜆)𝐵𝑐

(24 𝜋+7𝜆)
]  ,                                                                       (44) 

 

 

𝑝𝑞 =
3 (3𝑐3−1)

16 𝑐3
2 (24𝜋+7𝜆)

𝑒−8𝑘𝑡 − [
6𝑘2+(8 𝜋+5𝜆)𝐵𝑐

(24 𝜋+7𝜆)
]  .                                                                          (45) 

 

 

Similarly, using equations (35) and (36) in equation (16) with the help of linear equation of state (12), we obtain the 

energy density and pressure of the strange quark matter as  

 

𝜌 =
9 (3𝑐3−1)

16 𝑐3
2 (24𝜋+7𝜆)

𝑒−8𝑘𝑡 − [
18𝑘2+(24 𝜋+23𝜆)𝐵𝑐

(24 𝜋+7𝜆)
]  .                                                                       (46) 

 

 

𝑝 =
3 (3𝑐3−1)

16 𝑐3
2 (24𝜋+7𝜆)

𝑒−8𝑘𝑡 − [
6𝑘2+(40 𝜋+17𝜆)𝐵𝑐

(24 𝜋+7𝜆)
] .                                                                          (47) 

 

 

Discussion and Conclusion:- 
In this paper, the Kaluza-Klein cosmological model with quark and strange quark matters in 𝑓(𝑅, 𝑇) theory of 

gravity has been studied. The general solutions of the field equations of Kaluza-Klein space-time have been obtained 

under the assumption of constant deceleration parameter in the context of exponential volumetric expansion model. 

 

Equations (35) and (36) gives the solution of Kaluza-Klein cosmological model for exponential volumetric 

expansion in 𝑓(𝑅, 𝑇) gravity. From equations (35) and (36), it is observed that as  𝑡 → 0, 𝐴(𝑡) → (
𝑐1

𝑐4
)

1/4

 𝑒(1/16𝑘 𝑐3), 

𝐵(𝑡) → (𝑐1𝑐4
3)1/4 𝑒(3/16𝑘 𝑐3)   and  as  𝑡 → ∞,        𝐴(𝑡) → ∞,  𝐵(𝑡) → ∞.    



ISSN : 2320-5407                                                                              Int. J. Adv. Res. 9(04), 264-271 

270 
 

In Exponential Volumetric Expansion Model, it is observed that the spatial volume 𝑉 is finite at 𝑡 = 0, expands 

exponentially as 𝑡 increases and become infinitely large as 𝑡 → ∞ as shown in figure-1.  
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Figure 1:- Spatial volume 𝑉(𝑡) against cosmic 𝑡 for 𝑐1 = 1, 𝑘 = 1. 

 

From equations (38) and (39), it is observed that the directional Hubble parameters 𝐻𝑥, 𝐻𝑦  𝑎𝑛𝑑 𝐻𝑧 are finite                         

at 𝑡 = 0 and 𝑡 = ∞. The mean Hubble parameter (𝐻), the expansion scalar (𝜃) are constant for all values of 𝑡. Thus, 

the model represents uniform expansion. 

 

The anisotropy of the expansion (𝛥) is not promoted by the anisotropy of the fluid. Here the anisotropy of the 

expansion  Δ → 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 as 𝑡 → 0 and then decreases to null exponentially as 𝑡 increases provided that                               

𝑘 = 𝑐3 = 1. The space approaches to isotropy in this model since 𝛥 → 0 as 𝑡 → ∞ as shown in figure-2.  
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Figure 2:- Variation of anisotropic parameter (Δ)  against cosmic time 𝑡 

for 𝑘 =  1   , 𝑐3 = 1. 



ISSN : 2320-5407                                                                              Int. J. Adv. Res. 9(04), 264-271 

271 
 

0.2 0.4 0.6 0.8

0.05

0.1

0.15

0.2

0.25

t

 
Figure 3:- The variation of Shear scalar (𝜎2) against cosmic time t 

for 𝑘 =  1  , 𝑐3 = 1. 

From equation (4.19), it is observed that the shear scalar (𝜎2) start with finite value at 𝑡 = 0 and as time increases it 

decreases then tends to zero at 𝑡 → ∞ as shown in figure-3. 

The ratio  
𝜎2

𝜃2 = (
3

128 𝑘2𝑐3
2)

1

𝑒8𝑘𝑡 → 0  as  𝑡 → ∞. Hence the model isotropizes for large value of 𝑡. 

 

From equations (4.20) to (4.23), one can observed that density and pressure of quark matter (including strange quark 

models) become constants when as 𝑡 → 0 and then decreases exponentially as t increases and remain constant 

through out the evolution and hence there is no big bang type of singularity. 

 

From equation (31), it is observed that the present model for 𝑚 = 0 (𝑞 = −1) with negative deceleration parameter 

indicating that the universe is accelerating which is consistent with the present-day observations. For this model, we 

get  𝑞 = −1  which implies the fastest rate of expansion of the universe. Riess et al.[1, 40] and Perlmutter et al.[2] 

have shown that the deceleration parameter of the universe is in the range  −1 ≤ 𝑞 ≤ 0  and the present-day 

universe is undergoing accelerated expansion.                                
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