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ABSTRACT: In this paper we determine the estimates for upper / lower Box dimension of two dimensional
generalized Cantor like sets S. The two dimensional Cantor like sets S have been constructed in [3], for any sequence
{€,} with0 <e¢, <1 withthe help of sequence of sets {E, } of subsets of [0, 1]x [0, 1] such thatE,, D E,.,, S=
N E,, and m(S) = [I13-,( 1 — €,)]2. Further if 3 €,, < 00, m(S) = 0 and if ; €, = 00, m(S) = 0.

In particular it is proved that the upper and lower Box dimension of the set S satisfy dimg(S) =

log 4 T T log 4

—log{[]'[i‘pl@]l/k [ek+1]1/k} and dimg (S) < limy, o, log [n%ﬂ@f/k
of sets of positive measure to Cantor like sets namely * If T is a measurable set of positive measure then T* = {x -y : X
€T,yeT}=T-T contains an interval ( -a , a) for some a > 0”. We in fact prove that if S is Cantor like subset of
[0,1]then  S*=S-S=[-1,1].

limy, . Further we generalize the property

KEYWORDS: Cantor set, Cantor like set, upper Box dimension and lower Box dimension.
I. INTRODUCTION

Definition 1.1 Box Counting Dimension
Let F be any nonempty bounded subset of R™ and let Ng(F) be the smallest number of sets of diameter at

most § which can cover F. The lower and upper box dimensions of F are defined respectively as dimg(F) =

. log Ng(F) T e log Ng(F)
lims o log and dimg (F) = lims_q “logs
If the lower and upper box-counting dimensions of F are equal then the common value is called box-counting
dimension of F or box- dimension of F and dimg (F) = limg_, %.
Above definition is taken from Kenneth Falconer [2].

Il. MAIN RESULTS

A. CONSTRUCTION OF TWO DIMENSIONAL GENERALIZED CANTOR LIKE SET

At first stage we divide unit square E, into three columns and three rows consisting of nine rectangles out of
which 4 are corner squares each of side o , 4 are rectangles each of size ¢, x(1—251) and 1 centre square is of side €.
Let E; be a set obtained by removing middle rectangle from each column and each row. Thus E; is the union

. 1—
of 4 corner squares each of side 261.
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At second stage we divide each remaining square again into three columns and three rows consisting of nine
rectangles out of which 4 are corner squares each of side (1_61)4& 4 are rectangles each of length % and

breadth (1_61)4& and 1 centre square is of side £=<22€2.

Let E, be a set obtained by removing middle rectangle from each column and each row from each remaining
square. Thus E, is union of 42 squares each of side (-e)U-ep)
At third stage we divide each remaining squares again into three columns and three rows consisting of nine

rectangles out of which 4 are corner squares each of side - )-6) g gre rectangles each of length
(1- E1)(i— €2) €3 and breadth (1-e)(1-€e2)(1-€3) (1-€1)(1-€2) €3

and 1 centre square is of side
Let E; be a set obtained by removing middle rectangle from each column and each row from each remaining

square. Thus E; is union of 43 squares each of side w}w

Continuing in this way at k*" stage E,, consists of union of 4 squares each of side H{-‘zl(l;—si) .
We define
S =Nk Ex
Where E, =UJ;,j=1 2, ....,4¥ eachJ;, being a square of side H{-‘zl(l;—si) .

Above construction is from [3].
We determine of Box dimension of two dimensional generalized Cantor like set constructed in [3].
Theorem 2.2
Lower and upper box-dimensions of two dimensional generalized Cantor like set S satisfy dimg(S) =

log 4 T T log 4
— and dimg (S) < limy, 0 — .
~tog{ [ T8, 251 /i [ey101 7k} " 2% log M=, 8=k

limy

Proof
We know that in the construction of two dimensional generalized Cantor like set S, at k*" stage the set Ej
consists of union of 4 disjoint squares each of diameter

< V2 [Ty S22 1. Take 6, = V2 [[TE2, “=21. Then 6, > O as k - oo.

2
= At most 4% squares of diameter < &, are required to cover S.
~ Ng, (8) < 4%
By definition 1.1 we get,

— —  logNg(5) .
dimg(S) = lims, o Thogtr .Since §;, = 0 as k — oo, we have
- k
T T 10g4k
dimg(S) < limy, -
5(5) 7 otz [k, C5 )y
T 10g4k
<limy_, — a
% _log(vZ Ik, A5 |y e
_ E klog4
- k— — 1
? —iog(va[Il-, S5y ik
_ E log 4 _ E log 4
% togtva[E o S5 e T Clogva1 Vie-togrl - IS Vi
T, log 4

dimg(S) < limy_e

~loglTT& ., =)y /i
log4

—log{ [T, 251k [ef 4117k}

Now we show that dimg(S) = lim;_,, , consider a rectangle U of diameter < §,6 > 0

and choose k such that

\/5{[ | L (1_26") ] €rs1} < 6 <V2{[ H,’i;ﬁ(l_z—sn)]ek }, then U intersects at most one of the basic square of diameter

<2 [H1'§=1(1_2—E")] used in the construction of S.
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For if U intersects more than one square of E, then |U| = distance between two disjoint squares of E,
ie. U] = V2T 5 e, ),
e 8 >V 8= e, 3,

2
which is false because § < V2{[ H,’i;%@]ek 1.
These are 4* such squares.
= Atleast 4% squares of diameter < § are required to cover E; D S.

=~ Ng(S) = 4k
(1—€p)
Now § >+/2 {[ [k, an ] €ks1 )
S S SN 1
—logé log(%) - —1og{\/i{[l'[£§=1(1_25")]sk+1 }}
By definition 1.1 we get,
, s log Ns(S)
dimy (5) = limy..o EES
. 10g4k
> limy o -
e ([T s
= lim. log 4k
—Witk—>oo - k
—log{Vv2 {[ n%=1¥ ]Ek+1 }} i
- lim klog4
MM g—eo —Klog{VZ [[l’[%:l(l_;") ]Ek+1 }}1/k
= lim o8
=7 _toglva] /i —log{ [ 115,25 Jejer 3 ik
log 4

dimg(S) = limy o -
dims(5) 2 Lim —tog{ [T15=, 8=/ [eg 41 1/}
Now we take particular cases corresponding to different values of €,, = €, a constant , 0 <e < 1, in Theorem

2.2 which gives Box dimension of corresponding two dimensional Cantor like set.

Particular Case 2.3

When €,,= i , in Theorem 2.2 box dimension of two dimensional Cantor - E set is 1l°g(:).
og E
Let en:§
. . log 4
dimg(S) = limy,_, -
(5) 2 Loy ~1og{ [ T8, =1 7k [eyey, 17k}
. log 4 . log 4 log 4
=limy_o 1 = limy o 2, L1 N
togf [Tl 51 Ve ') ~logl 17k} logG)
dimg(S) = 2B5 s Q)
10g(2)
T T log 4
Now, dimg(S) < limy,_,o -
5(5) 7% log [Tk, 8=k
T log 4 T log 4 log 4
=limy, o =limy,_ = .
T g T o)
adimg(S)<-EL @)
10g(2)
From equations (1) and (2) we get,
dimpg (S) = &+
10g(2)

which is box dimension of two dimensional Cantor - E set.

Copyright to JIRSET DOI:10.15680/1JIRSET.2016.0512021 20396



o ISSN(Online) : 2319-8753
IJIRSET ISSN (Print) : 2347-6710

International Journal of Innovative Research in Science,
Engineering and Technology

(An 1SO 3297: 2007 Certified Organization)

Vol. 5, Issue 12, December 2016

Particular Case 2.4

When ¢, = % , in Theorem 2.2 box dimension of two dimensional Cantor - % set is 11°g(3) .
og 5
Lete, = %
. . log 4
dimg(S) = limy,_0 -
= T og{ [T, Ok [e4117k)
. log 4 . log 4 log 4
= limy 0 1 = limye_,o 3, L1 7y
og(1 115,52 1) ~1oglG) 17k 108
. log 4
dimg(S) = — 3
dim ($) = ;%7 ©
Now
_— —_— log 4 . log 4
dimg(S) < limy, o — = limy o
? ¥ -1og M-, S ~log [n%ﬂg—)l;% 17k
T log 4 log 4
=limy,_ = .
7% log {121k [&)¥1 k) log())
@ dimg(S) < 282 R 7
10g(3)
From equations (3) and (4) we get,
dimg (S) = 2% .
10g(3)

which is box dimension of two dimensional Cantor - % set.
Particular Case 2.5
When €, = % , in Theorem 2.2 box dimension of two dimensional Cantor - % setis 1.

Lete, = %
. . log 4
dimg(S) = limy -
(5) 2 limy ~tog{ [ T8, 251 /i [eye111 k)
. log 4 . log 4 log4
= limyeo T =limy oo ——— S — = =
og (M55 2 e 'y “log(( 1y o8
dimg(S) =1 (5)
Now
T T log 4
dimg(S) < limy_o
B( ) k —log [2 n%=1(1_25n)]1/k
T log 4 T log 4
=limy_ o =limy_ o =1.
E e T B
~dimg(S) <1 (6)
From equations (5) and (6) we get,
dimg(S) =1
which is box dimension of two dimensional Cantor - % set.
Remark 2.6
If €, =€, a constant , 0 < e < 1, then the estimates for lower and upper box-dimensions of two
dimensional generalized Cantor like set S determined in Theorem 2.2 are equal and the common value is _1::14;5).
2
Proof
Lete, =€,

log 4
log{ [T, 251k [ef 4,17k}

dim_B (S) 2 li_mk—mo
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= lim log 4 g log 4 _ log4
T ol 5 e ey T 10g( 5D [y —1og(50)
. log 4
dimg(S) =2 ——== = 1
dimy (5) > s M
Now
T T log 4
dimg(S) < limy_o
B( ) k —log [2 n71fi=1(1_25n)]1/k
T log 4 T log 4 log 4
=limy o =limy_ = —.
2% tog 215,520 T o {121 e[S 9KT k) —logCF0)
o dimg(S) < —28X_ )
—log(=-)
From equations (1) and (2) we get,
dimg (S) = —21-
—log(=-)

Now we generalize the following property of sets of positive measure, to Cantor like sets. “ If T is a
measurable set of positive measure then T* = {x-y:xe€T,y€T}=T-T contains an interval ( -a , a) for some «
> 011.

This result is from G. de. Barra [1], p — 43, Example 20.

In fact we prove that if S is a Cantor like set even if their measures are zero they satisfy the property that S* =
S — S contains an interval. The precise statement of the theorem is as follows.

Theorem
If S is one of the Cantor like sets then S* =S -S=[-1,1].
This is proved in the form of Lemma and Theorem as follows.
Lemma 2.7
If xe [0,1]and x has finite expansion in base 5 of length n then there exists b, ¢ of Cantor - i set such that
X = b - ¢ and expansion of b in base 5 is not longer than that of a and expansion of ¢ in base 5 is either no longer than
that of a or all the digits from n + 1 onwards are 4.
Proof
We prove this result by induction
Let P(n) : If x € [ 0,1 ] and x has finite expansion in base 5 of length n then there b, ¢ of Cantor - i set such that x =b
— c and expansion of b in base 5 is not longer than that of a and expansion of c in base 5 is either no longer than that of
a or all the digits from n + 1 onwards are 4.
For n =1, there are just five reals of length 1.

24X=00=00-00
4
x=01=c=2-2=2. 13_21:§-(§ S+t ... )=02-00444.
5
x=02=02-00
4
x=03=3=2.2=2. 52 =2 (242424 )=04-00444....
5 5 5 5 1—3 5 5 5 5
X =04 =04 - 00

~ Theresult is true for n = 1.

Let the result be true for n-1.

We prove that it is true for n

Letx=0-a;a,....a,=0a,8;.....8,_1 "8, ,wWherea; €{0,1,2,3,4},i=1,2,3, ...
Since the result is true for n-1

-~ We can write
Q) 0-a;a;....a,_1 =0-b;b,.....0b,_; -0-CyCy.....Cpq OF
(i) 0-aj8y.....8,1 =0 byby .....Dy,_; -0-ciCy ... c;_,444... ..
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There are five cases wherea,, =0, 1, 2, 3, 4.
Casel a,=0
For (i) x=0-a,a;,.....a,_,0
=0byb,....b,_,0-0c4Cy.....C,_4,0
=b-c
Where b, ¢ satisfy required conditions.
For (ii))x=0-a;a, .....a,_,0

=0-biby....b,_1 -0 cicy .....cp,_1444... ..
=b-c

Where b, ¢ satisfy required conditions.
Case Il Fora, =1
For (i) x=0-a,a;,.....a,_41

=0aa;....ap4 +00....... 1n‘"place

=0-byby....by g -0 CiCpu Gy g 00 L 1n*"place

=0-byby..by gy -0-CiCp i Gyt 00 L ontplace_0.0 ... 4+ placegqg

4
(00 e =2 Lot o2 (Dot

=00....... onplace_ .0 .. 4+ placegqq )
X=(0-byby.....0,_, +00 ....... antplace) (0. ¢ ¢, .....Cp_q* 00 ....... g+ Tplacegay )
= 0' b1b2 ..bn_1 2 - O' 0102 T Cn_10444
=b-c
Where b, ¢ satisfy required conditions.
For (ii))x=0-a,a; .....a,-,1
=0aa;....ap 4 +00....... 1n‘"place
=0 byby ... b, ;-0 CiCy .. Cly_,A44... .+ 00 ......00" "Placesas

(00 ....... ptptace = Lot e 0 4 4 g .. A+ D placeqag )

n-1 "

X=0-byby ...b,_; - (0 cicy....c,_1444....- 00 ....... oon"placeqaq. )
=0 bib, ....b,_; -0-cic; ... c;,_,400.....
=0-byby....h,_1 -0 cicy ....c;,_,4
X=b-c

Where b, ¢ satisfy required conditions.
Case Il Fora, =2
For (i) x=0-a,a;5.....8,_,2
=0aa;....ap4 +00....... on‘"place
=0-byby.....0, 1 -0-C1Cy... Cpgt 00 ....... 02n"place
=0byby....0,_;2-0cC4Cy.....Crq
=b-c
Where b, ¢ satisfy required conditions.
For (ii))x=0-a,a; .....8,_,2

=0-a;8y....a,1+00....... on'"place
=0 byby oo by 0 1€y oo €y 444, + 00 ... 20 Place
=0-byby ... b, 12-0-cicy ....c,,_,444... ..

X=b-c

Where b, ¢ satisfy required conditions.
Case IV Fora, =3
For (i) x=0-a,a5.....8,_13
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th

=0-a;a,....8,1 +00 ....... 3n "place

th
=0-byb, ....by g -0 €1y Cpg v 00 3n""place

th th
=0-byby.....0p_1 -0-CCy..Cpy +# 00 L, gnplace_ .0 ... 4+ placegpy

4

= 0 nthplace 23 -4 1 _4 Tfgni_4 0 4 4
(.OO ...... 3y _5"_5"-5"_5"-1—1/5_5"_(5" 5n+1+5n+2+ ----- )

=00 ......4n"place 0.0 . 4(+D)placeqay )
X=(0-byby....0,_, +00....... gnt'vlace) (0. ¢ c, .....Cpqt 00 ....... 4+t
= 8' b1b2 ..bn_1 4 - O' 0102 T Cn_10444
=b-c
Where b, ¢ satisfy required conditions.
For (ii))x=0-a,a; .....a,-13

)th

placegqq )

=0-a,8,.....8,1 + 00 ....... 3n*"place
=0 byby ... b, ;-0 CiCy oo Cly_,A44... .+ 00 ...... 20" Placer 0.0 . 00n"Placeqaq.
4
th 3 2 1 _ 2  “fent1_ 2 0 4 4
(+00....... 3" place:s_"zs_"+5_":5_"+1—5—1/5:5_"+ 5_n+5n+1 5n+2+ ...... )
=00....... on'placet 0.0 . 4D placeqaq |y
X=0byby ...b,_, +00 ....... onplace (0. cicy .....c,_,444.....- 00 ...00""Placeqas . )
= 0-byby ... b,_,2-0-¢C) .....C,_,400.....
=0-byb; .....b,_12-0-cicy ... cp_14
X=b-c

Where b, ¢ satisfy required conditions.
Case V Fora, =4
For (i) x=0-a,a5.....a,_,4
=0aa;....ap4 +00....... 4n*"place
=0-byby.....0,_ 1 -0-C1Cy... Cpgt 00 ....... 04n"place
=0 b,b,....0,_44-0cCy.....Cr_y
=b-c
Where b, ¢ satisfy required conditions.
For (ii))x=0-a,a;, .....a,_14

=0aa;....8,-4 +00....... gnplace
=0 byby oo by = 0 C1Cy v Gy g 444 + 00 ... 47 "Place
=0-byby ... b,_14-0-cicy .....c,,_,444... ..

X=b-c
Where b, ¢ satisfy required conditions.
~ Result is true for P(1) and P(n-1) => P(n)
-~ Result is true for all n.
-~ For any finite fraction x having expansion in base 5, we can find two elements b and ¢ from Cantor - i set such that x
=b-c.
Theorem 2.8
i) [0,1]c S-S
i) [-1,1]1=S-S, where S is Cantor - i seti.e. S={x€[0,1] : x has base 5 expansion containing 0, 2,
4 only}
Proof i) We showthat [0,1]  S- S, where S is Cantor - i set. i.e. S= {x € [0,1] : x has base 5 expansion containing
0, 2, 4 only}
Letae[0,1]]anda=0-a,a,....... be a base 5 expansion of a.
If X, =0-a;a,....... ag, k=1 Thena=Ilim_, x;.
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From Lemma 2.7 for k > 1 there exist members of the Cantor-i set b, and ¢, such that x; = by, - c,.
Since {b; }c S, where S is compact there is a convergent subsequence {b;; } which converges. Similarly
corresponding to {b;; } there is a sequence {c;; } which has a convergent subsequence {c;;, }.
Since each subsequence must converge to the same limit as that of its parent sequence, subsequence {b;;,-}
and {c;;,-} are also convergent. Let their limits be b and c respectively, where b, ¢ € S.
Alsoa=1lim;_ x;
=lim, e Xijr
= Iimr—»oo(bijr - Cijr )
=b-c
~a=b-c,whereb,ceS
~a€ES-S
~a€f[0,1]]=aeS-S
[0,1]cS-S
ii) We showthat[-1,1]=S-S, where S is Cantor - i set.
By part (i) we know that[0,1]<S-S L Q)
We showthat[-1,0]c S-S
Letx €[-1,0]
~-x €]0,1]
~-X=b-c,whereb,ceS (By part (i))
~ X=c—-b,whereb,ceS
» XES-S
~X €[-1,0]=>x€S-S
[(1,01cS-S (2)
From equations (1) and (2), we get
[-1,1]cS-S (3)
Now we show that S-Sc[-1,1]
Letx,y€S
~0<x <land0<y<1
~0<x <land-1<-y<0
~-1<x-y <1
~X-ye[-1,1]
~S-Sc[-1,1] 4)
From equations (3) and (4), we get
[-1,1]=S-S, whereS is Cantor -iset

Similar proofs can be given for Cantor ternary set, Cantor - % set, Cantor - ﬁ set, n> 1.

Lemma 2.9

If x € [0, 1] and x has finite ternary expansion of length n then there exists b, ¢ of Cantor ternary set such that
X = b - ¢ and expansion of b is not longer than that of a, expansion of ¢ is either no longer than that of a or all the digits
from n + 1 onwards

are 2.
Theorem 2.10

i) [0,1]c S-S

i) [-1,1]=S-S, where S is Cantor ternary set.
Lemma 2.11

If x € [0, 1] and x has finite expansion in base 7 of length n then there exists b, ¢ of Cantor - % set such that x

= b - c and expansion of b in base 7 is not longer than that of a and expansion of c in base 7 is either no longer than that
of a or all the digits from
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n + 1 onwards are 6.

Theorem 2.12
i) [0,1]c S-S
i) [-1,1]=S-S, where S is Cantor - % set.

111. CONCLUSION

We have obtained estimates for for upper / lower Box dimension of such two dimensional generalized Cantor
like sets S. In particular it is proved that the upper and lower Box dimension of the set S satisfy dimg(S) =

. log 4 T, T log 4 .

limy e and dimg (S) < limy, and for the particular case €,, = €, a

T og{ M2, O k[0 17k} 5(5) k2% log M-, O Vi P "

constant , 0 <e < 1 the equality holds namelydimg(S) :l_l(% .. Also we observe that the property S*=S - S
og(——

2
contains an interval is also satisfied by Cantor - i set, Cantor - % set even though they have measure zero.
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