J. Indian Chem. Soc., Vol. 93, December 2016, pp. 1413-1416

Synthesis and biological evaluation of 4-aryl-5-hepta-O-benzoyl- β -D-lactosylimino-3-hepta-O-benzoyl- β -D-lactosylimino-1,2,4-dithiazolidines (hydrochlorides)

Kavita M. Heda*^a and Shirish P. Deshmukh^b

^aDepartment of Chemistry, Shri R. L. T. College of Science, Akola-444 001, Maharashtra, India

E-mail : kavitaheda25@gmail.com

^bP.G. Department of Chemistry, Shri Shivaji College, Akola-444 001, Maharashtra, India

Manuscript received 04 November 2015, accepted 26 October 2016

Abstract : A series of 4-aryl-5-hepta-O-benzoyl- β -D-lactosylimino-3-hepta-O-benzoyl- β -D-lactosylimino-1,2,4-dithiazolidines (hydrochloride) have been synthesized by the interaction of various 1-hepta-O-benzoyl- β -D-lactosyl-3-aryl thiocarbamides with N-hepta-O-benzoyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride. These compounds were screened for their antibacterial and antifungal activities against *E. coli*, *P. vulgaries*, *S. aureus*, *S. typhimurium*, *K. pneumonie*, *Ps. aeruginosa*, *A. niger* and *C. albicance*. The newly synthesized compounds have been characterized by analytical and IR, ¹H NMR and Mass spectral studies.

 $Keywords: Lactosyl thiocarbamides, hepta-O-benzoyl-\beta-D-lactosyl-S-chloro isothiocarbamoyl chloride, 1,2,4-dithiazolidines, antimicrobial activity.$

Introduction

The drug containing 1,2,4-dithiazolidines show a diverse range of pharmacological activities^{1–3}, antimicrobial^{4,5}, anti-inflammatory^{6,8}, anti-HIV⁹, anti-ulcer^{10,11}, anti-cancer¹² and anti-convulsant^{13,14}. *N*-Lactosylated derivatives^{15–18} exhibits a wide range of medicinal activites such as antiviral, antidiabatic, analgesic and other significant activites. Here is reported the synthesis of several *N*-lactosylated-1,2,4-dithiazolidines by the interaction of several 1-hepta-*O*-benzoyl-β-D-lactosyl-3-aryl thiocarbamides with *N*-hepta-*O*-benzoyl-β-D-lactosyl-*S*-chloro isothiocarbamoyl chloride. The required 1-hepta-*O*-benzoyl-β-D-lactosyl by the interaction of 1-hepta-*O*-benzoyl-β-D-lactosyl by the interaction of 1-hepta-*O*-benzoyl-β-D-lactosyl-β-D-lactosyl isothiocyanates with various amines.

Results and discussion

Several 4-aryl-5-hepta-O-benzoyl- β -D-lactosylimino-3-hepta-O-benzoyl- β -D-lactosylimino-1,2,4- dithiazolidines (hydrochloride) have been prepared by the interaction of several 1-hepta-O-benzoyl- β -D-lactosyl-3-aryl thiocarbamides (**1a-f**) with *N*-hepta-O-benzoyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride (**2**) in CHCl₃. After condensation, the solvent was distilled off to obtain a sticky resi-

due. This residue was triturated with petroleum ether (60– 80 °C) to afford a pale yellow solid (**3a-f**). The product was found to be non-desulphurizable when boiled with alkaline lead acetate solution. The specific rotations were measured in chloroform. The result is summarized in Table 1. In spectrum analysis of product shows bands due to Ar. C-H, ali. C-H, C=O, C=N, C-N, C-O, C-S, stretching and ¹H NMR spectrum of product distinctly displayed signals due to aromatic protons and lactose ring protons. The Mass spectrum of product was also observed. The identities of these new *N*-lactosides have been established on the basis of usual chemical transformations and also IR, ¹H NMR and Mass spectral studies^{19–21}.

Experimental

All chemicals were research grade. Melting points determined are uncorrected. IR spectra were recorded in KBr on a FT-IR Perkin-Elmer RXI (4000–450 cm⁻¹) spectrophotometer. ¹H NMR measurements were performed on a Bruker DRX-300 (300 MHz FT NMR) NMR spectrometer in CDCl₃) solution with TMS as internal reference. The Mass spectra were recorded on a THERMO Finnigan LCQ Advantage max ion trap Mass spectro-

	Table 1.	Physical data	for charac	terization of compound	ls (3a-f)		
Reactant : N-H	Hepta-O-benzo	yl-β-D-lactosy	l-S-chloro	isothiocarbamoyl chlor	ride (2) (0.001 M ,	1.150 g)	
1-Hepta-O-benzoyl-β-D- lactosyl-3-aryl thiocarbamides	Product	Yield (%)	m.p. (°C)				. ,
(la-f)				acetone, 6:4)		Ν	S
3-Phenyl	3a	83.00	142	0.67	-45.5	1.80	2.71
					(c, 0.011)	(1.76)	(2.68)
3-o-Cl-Phenyl	3b	80.41	150	0.58	-72.7	1.77	2.62
					(c, 0.011)	(1.73)	(2.64)
3-m-Cl-Phenyl	3c	89.00	147	0.76	-107.1	1.75	2.68
					(<i>c</i> , 0.015)	(1.73)	(2.64)
3-p-Cl-Phenyl	3d	78.00	135	0.59	+163.6	1.76	2.60
					(c, 0.011)	(1.73)	(2.64)
3- <i>o</i> -Tolyl	3e	88.33	130	0.72	+238	1.80	2.71
					(<i>c</i> , 0.013)	(1.75)	(2.66)
3-p-Tolyl	3f	65.00	127	0.78	+254.5	1.78	2.69
					(c, 0.011)	(1.75)	(2.66)

J. Indian Chem. Soc., Vol. 93, December 2016

meter. Optical rotation $[\alpha]_D^{31}$ measured on a Equip-Tronics Digital Polarimeter EQ-800 at 31°C in CHCl₃. Thin layer chromatography (TLC) was performed on silica gel G and spots were visualized by iodine vapour. The compounds were screened for their antibacterial and antifungal activities by the disc diffusion assay method²². The compounds describe in this paper were first time synthesized by the multistep reaction protocol.

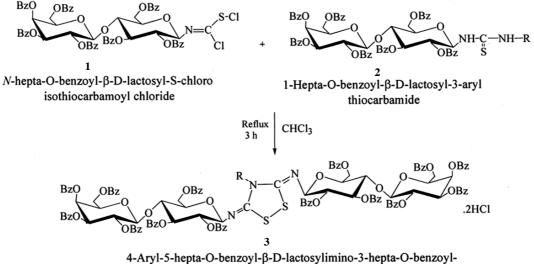
General procedure :

Synthesis of 1-hepta-O-benzoyl- β -D-lactosyl-3-aryl thiocarbamides²³ (1a-f) :

l-Hepta-O-benzoyl- β -D-lactosyl-3-aryl thiocarbamides (**1a-f**) were synthesized by interaction of hepta-O-benzoyl- β -D-lactosyl isothiocyanate with different amines in benzene medium.

Synthesis of N-hepta-O-benzoyl- β -D-lactosyl-S-chloro isothiocarbamoyl chloride (2) :

N-Hepta-*O*-benzoyl- β -D-lactosyl-*S*-chloro isothiocarbamoyl chloride (**2**) was prepared by passing a calculated amount of chlorine through a chloroformic solution of hepta-*O*-benzoyl- β -D-lactosyl isothiocyanate maintaining the temperature below 10 °C.


Synthesis of 4-aryl-5-hepta-O-benzoyl- β -D-lactosylimino-3-hepta-O-benzoyl- β -D-lactosylimino-1,2,4-dithiazolidines (hydrochloride) :

A mixture of l-hepta-O-benzoyl-β-D-lactosyl-3-phenyl

thiocarbamide (la, 0.001 *M*, 1.204 g in 20 ml CHCl₃) and *N*-hepta-*O*-benzoyl- β -D-lactosyl-*S*-chloro isothiocarbamoyl chloride (2) (0.001 *M*, 1.150 g, in 5 ml CHCl₃) was gently refluxed for 3 h. The progress of reaction was monitored by TLC. After completion of the reaction, the reaction mixture was brought to room temperature and the solvent removed under reduced pressure to obtain residue. This residue was triturated several times with petroleum ether (60–80 °C) to afford a pale yellow solid (**3a**).

(3a) IR (KBr) : υ 3062 (Ar. C-H), 2958 (Ali. C-H), 1730 (C=O), 1539 (C=N), 1315 (C-O), 1026, 908 (lactosyl ring deformation), 709 (C-S), 474 (S-S) cm⁻¹; ¹H NMR (δ in ppm, CDCl₃) : 88.13–7.16 (75H, m, 14-COC₆H₅, C₆H₅), 6.74–3.75 (28H, m, lactose ring protons); Mass (*mlz*) : 2386 (M⁺) (not located), 1333 (M⁺-C₆₁H₄₉O₁₇), 1053 (HBL⁺), 948 (HBL⁺-C₇H₅O), 932 (HBL⁺-C₇H₅O₂), 918 (HBL⁺-C₈H₇O₂), 579 (TBG⁺), 458 (TBG⁺-C₇H₅O₂), 335 (TBG⁺-C₁₄H₁₂O₄), 105 (C₆H₅CO) (Found : C, 65.44; H, 4.35; N, 1.80; S, 2.71. Calcd. for C₁₃₀H₁₀₃O₃₄N₃S₂.2HCl. Required : C, 65.38; H, 4.31; N, 1.76; S, 2.68%).

(3b) IR (KBr); υ 3062 (Ar. C-H), 2958 (Ali. C-H), 1730 (C=O), 1583 (C=N), 1269 (C-O), 1026, 910 (lactosyl ring deformation), 709 (C-S), 418 (S-S) cm⁻¹; ¹H NMR (δ in ppm, CDCl₃) : 8.08–7.18 (74H, m, 14– COC₆H₅, C₆H₄), 6.75–3.72 (28H, m, lactose ring proHeda et al. : Synthesis and biological evaluation of 4-aryl-5-hepta-O-benzoyl-β-D-lactosylimino etc.

 β -D-lactosylimino -1, 2, 4-dithiazolidines (hydrochloride)

where $OBz = COC_6H_5$ (benzoyl) : R = (a) Phenyl, (b) o-Cl-Phenyl, (c) m-Cl-Phenyl, (d) p-Cl-Phenyl, (e) o-tolyl, (f) p-tolyl.

tons); Mass (m/z) : 2420.5 (M⁺) (not located), 1367.5 (M⁺-C₆₁H₄₉O₁₇), 1126 (M⁺-C₆₉H₅₃O₁₇N₃S₂Cl), 1053 (HBL⁺), 948 (HBL⁺-C₇H₅O), 932 (HBL⁺-C₇H₅O₂), 579 (TBG⁺), 475 (TBG⁺-C₇H₅O), 335 (TBG⁺-C₁₄H₁₂O₄), 105 (C₆H₅CO) (Found : C, 64.48; H, 4.25; N, 1.77; S, 2.70. Calcd. for C₁₃₀H₁₀₂O₃₄N₃S₂Cl.2HCl. Required : C, 64.44; H, 4.21; N, 1.73; S, 2.64%).

(3e) IR (KBr) : υ 3062 (Ar. C-H), 2976 (Ali. C-H), 1730 (C=O), 1583 (C=N), 1390 (C-O), 1026, 910 (lactosyl ring deformation), 707 (C-S), 509 (S-S) cm⁻¹; ¹H NMR (δ in ppm, CDCl₃) : 8.08–7.18 (74H, m, 14 COC_6H_5 , C_6H_4), 6.74–3.72 (28H, m, lactose ring protons), 2.45–2.16 (3H, s, Ali. CH₃); Mass (*mlz*) : 2400 (M⁺) (not located), 1347 (M⁺-C₆₁H₄₉O₁₇), 1053 (HBL⁺), 948 (HBL⁺-C₇H₅O), 932 (HBL⁺-C₇H₅O₂), 579 (TBG⁺), 475 (TBG⁺-C₇H₅O), 335 (TBG⁺-C₁₄H₁₂O₄), 105 (C₆H₅CO) (Found : C, 66.1; H, 4.40; N, 1.80; S, 2.71. Calcd. for C₁₃₁H₁₀₅O₃₄N₃S₂.2HCl. Required : C, 66.5; H, 4.37; N, 1.75; S, 2.66%).

Antimicrobial activity :

All the compounds have been screened for both antibacterial and antifungal activity by using disc diffusion

 Table 2. Antimicrobial activity of 4-aryl-5-hepta-O-benzoyl-β-D-lactosylimino-3-hepta-O-benzoyl-β-D-lactosylimino-1,2,4-dithiazolidines (hydrochloride)

Compd.	E. coli	S. aureus	P. vulgaris	Ps. aeruginosa	S. typhi	K. pneumonie	A. niger	C. albicance
А	12	16	10	14	16	16	19	18
В	10	17	9	11	14	-	20	16
С	11	12	11	15	12	11	-	21
D	15	13	18	11	18	12	11	9
Е	12	_	13	13	12	13	17	16
F	16	10	15	-	19	15	19	20
DMSO	-	-	_	_	-	-	-	_
Amikacin	18	21	23	19	20	21	-	-
Fluconazole	-	-	-	-	-	-	24	24
			Z	Zone size was interpr	eted by			
Sample		Disc cor	itent	Resistant		Intermediate		Sensitive
Amikacin		100 ug/	'ml	≤ 15 mm		16-20 mm		≥ 21 mm
Fluconazole		100 ug/	'ml	≤ 15 mm		16–20 mm		≥ 21 mm

assay. For this sterile filter paper disc (6 mm) impregnated with fixed doses of compounds was placed on preinoculated surface. The disc bearing plates were incubated at 37 °C for 24 h. Inhibition zones read after incubation at 37 °C for 24 h. for bacterial strains and for fungal strains inhibition zones read after incubation at 35 °C for 48 h. The compounds were taken at a concentration or 1 mg/ml using dimethyl sulphoxide as a solvent. Amikacin (100 ug/ml) was used as standard for antibacterial and Fluconazole (100 ug/ml) as a standard for antifungal activity. The compound were screened for antibacterial activity against Escherichia coli, Proteus vulgaris, Staphylococcus aureus, Salmonella typhi, Klebsiella pneumonie, Psudomonas aeruginosa in nutrient agar medium and for Aspergillus niger and Candida albicance in potato dextrose agar medium. It has been observed that all the compounds showed nearly same activity against both bacteria and fungi. 3d and 3f exhibites most significant activity against Salmonella typhi. 3b exhibits good activity against S. aureus. The compounds 3a, 3b and 3f showed good activity against A. niger while compounds 3c and 3f showed good activity against C. albicance. All other compounds exhibited low to moderate activity.

Acknowledgement

Authors are thankful to Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh for providing spectra and Principal, Dr. V. D. Nanoty for providing necessary facilities.

References

- J. R. Webb, H. Mitsuya and S. Broder, J. Med. Chem., 1988, 31, 1475.
- A. B. Reitz, R. W. Tuman, C. S. Marchione, A. D. Jordan, C. R. Bowden and B. E. Maryanoff, *J. Med. Chem.*, 1989, 32, 2110.
- 3. H. Parrot-Lopez, H. Galons, A. W. Coleman, J. Mahuteau and M. Miocque, *Tetrahedron Lett.*, 1992, **33**, 209.
- 4. Z. A. Kaplancikli, G. Turan-Zitouni, A. Ozdemir and G. Revial, *Eur. J. Med. Chem.*, 2008, **43**, 155.
- 5. N. A. Al-Masoudi, Y. A. Al-Soud and M. Irene. Lagoja, *Carbohy. Res.*, 1999, **318**, 67.

- A. M. Abdel-Megeed, H. M. Abdel-Rahman and S. Gamal-Eldien, *Eur. J. Med. Chem.*, 2009, 44, 117.
- P. X. Franklin, A. D. Pillia, P. D. Rathod, S. Yerande, M. Nivsarkar, H. Padh, K. K. Vasu and V. Sudarsanam, *Eur. J. Med. Chem.*, 2008, 43, 129.
- V. B. Jadhav, M. V. Kulkarni, V. P. Rasal, S. S. Biradar and M. D. Vinay, *Eur. J. Med. Chem.*, 2008, 43, 1721.
- 9. R. K. Rawal, R. Tripathi, S. B. Katti, C. Pannecouque and Erik De Clercq, *Eur. J Med. Chem.*, 2008, **43**, 2800.
- K. Ishihara, T. Ichikawa, Y. Komuro, S. Ohara and K. Hotta, Arzneim Forsch, Drug Res., 1994, 44, 827.
- D. Y. Graham, A. Mccullough, M. Sklar, R. C. Stone and R. H. Bibhop, *Digestive Disease and Sciences*, 1990, 35, 66.
- D. Havrytyuk, L. Mosula, B. Zimenkovsky, O. Vasylenko, A. Gzella and R. Lesyk, *Eur. J. Med. Chem.*, 2010, 45, 5012.
- A. Geronikaki, P. Eleftheriou, P. Vicini, I. Alam, A. Dixit and A. K. Saxena, *Eur. J. Med. Chem.*, 2008, 51, 5221.
- V. Mathew, J. Keshavayya and V. P. Vaidya, *Eur. J.* Med. Chem., 2006, 41, 1048.
- 15. K. M. Heda and S. P. Deshmukh, Int. J. Chem. Sci., 2011, 9, 1750.
- 16. D. V. Mangte and S. P. Deshmukh, *Heteroatom Chemistry*, 2007, 18, 390.
- 17. P. V. Tale and S. P. Deshmukh, Indian J. Chem., 2006, 45B, 558.
- K. M. Heda and S. P. Deshmukh, *Rasayan J. Chem.*, 2012, 5, 24.
- R. M. Silverstein and F. X. Webster, "Spectrometric Identification of Organic Compounds", 6th ed., John Wiley and Sons, Inc, New York, 2004.
- N. B. Colthup, L. H. Daly and S. E. Wibereley, "Introduction to Infrared and Raman spectroscopy", Academic Press, New York, 1964.
- 21. D. H. Williams and L. Fleming, "Spectroscopic Methods in Organic Chemistry", 4th ed., Tata-McGraw-Hill, 1988.
- J. G. Collee and W. Marr, "Laboratory control of anti-microbial therapy", in : J. G. College, J. P. Duguid, A. G. Fraser and B. P. Marmion (eds.), Mackie and Me Cartney, 'Practical Medical Microbiology', 14th ed., Edinburgh Churchill Livingeston, 1996, pp. 114-115.
- 23. P. T. Agrawal and S. P. Deshmukh, J. Curr. Chem. Pharma. Sci., 2012, 2, 157.