Shri R. L. T. College of Science,

Chapter 6 (Physical chemistry)

Numericals:

. Example: 1

The surface tension of toluene at 293 K is 0.028 N m⁻¹ and its density at this temperature is 0.866 x 10^3 kg m⁻³. If the surface tension of water is 0.07275 Nm⁻¹ and density 0.9982 x 10^3 kg m⁻³, calculate the ratio of number of drops of liquid to that of water?

Solution: Given : -

Surface tension of toluene		γ_t	=	0.028	N m ⁻¹
Surface tension of water		$\gamma_{\rm w}$	=	0.072	75 N m ⁻¹
Density of toluene		d_t	=	0.866	$ imes 10^3$ kg m ⁻³
Density of water		d_w	=	0.9982	$2 \times 10^3 \text{ kg m}^{-3}$
Number of drops of toluene			=	n _t	
Number of drops of water			=	$n_{\rm w}$	
We have, $\frac{\gamma_t}{\gamma_w} = \frac{n_w d_t}{n_t d_w}$		OR		$\frac{n_t}{n_w} =$	$\frac{\gamma_w d_t}{\gamma_t d_w}$
	$\frac{n_l}{l} = -$	$\frac{0.07275 \times 0.866 \times 10^3}{0.028 \times 0.9982 \times 10^3}$		=	2.25drops

Example: 2

Water required 120.5 seconds to flow through a viscometer and the same volume of acetone required 49.5 seconds. If the densities of water and acetone at 293 K are 9.982 x 10^2 kg m⁻³ and 7.92 x 10^2 kg m⁻³ respectively and the coefficient of viscosity of water at 293 K is 10.05 Pascal second, calculate the coefficient of viscosity of acetone at this temperature.

Solution: Given : -

Flow time of acetone	ta	=	49.5 sec.
Flow time of water	t_w	=	120.5 sec.
Density of acetone	d_a	=	$7.92\times10^2~kg~m^{\text{-}3}$
Density of water	d_w	=	$9.982\times10^2~kg~m^{\text{-}3}$
Coefficient of viscosity of w	10.05 Pascal sec.		
Coefficient of viscosity of ac	?		

We have,
$$\frac{\eta_a}{\eta_w} = \frac{t_a \, d_a}{t_w \, d_w}$$
 OR $\eta_a = \frac{t_a \, d_a}{t_w \, d_w} \times \eta_w$
 $\therefore \quad \eta_a = \frac{49.5 \times 7.92 \times 10^2 \times 10.05}{120.5 \times 9.982 \times 10^2} = 3.257$ Pascal sec.

Example: 3

In the determination of surface tension of a liquid by the drop number method, it gives 55 drops while water gave 25 drops for the same volume. The densities of the liquid and water are 0.996 and 0.800 g cm-3 respectively. Find the surface tension of the liquid if that of the water is 72.0 dynes cm-1.

Solution: Given : -						
Surface tension of liquid	γl	=	?			
Surface tension of water	γw	=	72.0 dynes cm-1			
Density of liquid	dl	=	0.996g cm-3			
Density of water	dw	=	0.800 g cm-3			
Number of drops of liquid	=	nl	=55			
Number of drops of water	=	nw	=25			
We know						
$\frac{\gamma l}{\gamma_w} = \frac{nwdl}{nldw} \qquad \gamma l = \gamma w \times \frac{nwdl}{nldw}$						
$\frac{25 \times 0.996 \times 72}{0.800 \times 55}$						
$\frac{\gamma l}{72} = \frac{25 \times 0.996}{0.800 \times 55}$						
$\frac{\gamma l}{72} = \frac{24.9}{44}$						
$\gamma l = \frac{72 \ x \ 24.9}{44} = 40.74$ dyne	es cm-1					

Example: 4

In an experiment with Ostwald viscometer, the time of flow of water and ethanol are 80 sec and 175 sec at 20°C. The density of water = 0.998 g cm-3 and that of ethanol = 0.790 g cm-3. The viscosity of water at 20°C is 0.01008 poise. Calculate the viscosity of ethanol.

Solution: Given : -Flow time of ethanol 175 sec. te =Flow time of water 80sec. tw =Density of ethanol 0.790 g cm-3 da =Density of water dw 0.998 g cm-3 =Coefficient of viscosity of water 0.01008 poise nw= Coefficient of viscosity of ethanol $\eta a =$? We know ηe te.de tw.dw nw te.de $\eta e = \eta w. \frac{1}{tw. dw}$ 0.01008 x 175 x 0.790 $\eta e = -$ 80 x 0.998 1.3935 79.84 = 0.01784 poise

Example: 5

In an experiment with Ostwald's viscometer, pure water took 1.52 minutes to flow through the capillary at 20°C. For the same volume of another liquid of density 0.80 g cm-3 the flow time was 2.25 minutes. Find the relative viscosity of the liquid and its absolute viscosity in centipoises. Density of water at 20°C is 0.9982 and absolute viscosity of water is 1.005 centipoise.

Solution: Given : -Flow time of liquid 2.25min. = 145 sec ta =Flow time of water 1.52min. = 112 sec tw = Density of liquid da 0.80 g cm-3 = Density of water dw =0.9982 cm-3 Coefficient of viscosity of water $\eta w=$ 1.005 centipoise. Coefficient of viscosity of acetone na= ? ? Relative viscosity of the liquid = nl/nw =We know $\frac{\eta l}{\eta w} = \frac{tl.\,dl}{tw.\,dw}$ $\eta l = \frac{\eta w.tl.\,dl}{tw.dw}$ $\eta l = \frac{1.005 \ x \ 145 \ x \ 0.80}{112 \ x \ 0.9982}$ $\frac{116.58}{111.79} = 1.042$ Centipoise $\frac{\eta l}{\eta w} = \frac{1.0428}{1.005} = 1.037$ Relative viscosity = centipoise

Assignment:

The coefficient of viscosity of two liquids at 298 K is 1.408 x 10⁻³ kg m⁻¹ s⁻¹ and 1.594 x 10⁻³ kg m⁻¹ s⁻¹ and their densities are 8.07 x 10 ²kg m⁻³ and 10.17 x 10 ²kg m-3 respectively. If the time of flow for the first liquid is 100 seconds, calculate the time of flow for the second liquid.