The Delegation Event Model

The modern approach to handling events is based on the delegation event model, whic
defines standard and consistent mechanisms to generate and process events. Its concept

quite simple: a source generates an event and sends it to one or more listeners. In this schem
the listener simply waits until it receives an event. Once an event is received, the listenc
processes the event and then returns. The advantage of this design is that the application log
that processes events is cleanly separated from the user interface logic that generates tho:s
events. A user interface element is able to “delegate” the processing of an event to a separat
piece of code.

In the delegation event model, listeners must register with a source in order to receive ¢
event notification. This provides an important benefit: notifications are sent only to listene
that want to receive them. This is a more efficient way to handle events than the design use
by the original Java 1.0 approach.

The following sections define events and describe the roles of sources and listeners.

Events

In the delegation model, an event is an object that describes a state change in a source. ¢
event can be generated as a consequence of a person interacting with the elements in
graphical user interface. Some of the activities that cause events to be generated are pressir

a button, entering a character via the keyboard, selecting an item in a list, and clicking th
mouse.

Events may also occur that are not directly caused by interactions with a user interface. F
example, an event may be generated when a timer expires, a counter exceeds a value,
software or hardware failure occurs, or an operation is completed. You are free to defir
events that are appropriate for your application.

Event Sources

A source is an object that generates an event. This occurs when the internal state of that obje
changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications about
specific type of event. Each type of event has its own registration method. Here is the gener
form:

public void addTypelistener (Typelistener el)

Here, Type is the name of the event, and el is a reference to the event listener. For exampl
the method that registers a keyboard event listener is called addKeyListener(). The methc
that registers a mouse motion listener is called addMouseMotionListener(). When an evel
occurs, all registered listeners are notified and receive a copy of the event object. This is know
as multicasting the event. In all cases, notifications are sent only to listeners that register 1
receive them.

Some sources may allow only one listener to register.
. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest in a specif
type of event. The general form of such a method is this:

public void removeTypelistener(TypelListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For exampl
to remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates event
For example, the Component class provides methods to add and remove keyboard and mous
event listeners.

Event Listeners

. Event listeners are objects that are notified as soon as a
specific event occurs. Event listeners must define the
methods to process the notification they are interested to
receive.

The methods that receive and process events are defined in a set of interfaces, such as thos
found in java.awt.event. For example, the MouseMotionListener interface defines tw
methods to receive notifications when the mouse is dragged or moved. Any object may recei\
and process one or both of these events if it provides an implementation of this interfac
Other listener interfaces are discussed later in this and other chapters.

event source registered event listener

